[1]

Chen H, Lv F, Li Z, Xiao W. 2022. Advances in intergenus hybridization breeding of Phalaenopsis. Journal of China Agricultural University 27:125−35

doi: 10.11841/j.issn.1007-4333.2022.09.12
[2]

Xia K, Zhang D, Xu X, Liu G, Yang Y, et al. 2022. Protoplast technology enables the identification of efficient multiplex genome editing tools in Phalaenopsis. Plant Science 322:111368−68

doi: 10.1016/j.plantsci.2022.111368
[3]

Wang R, Mao C, Ming F. 2022. PeMYB4L interacts with PeMYC4 to regulate anthocyanin biosynthesis in Phalaenopsis orchid. Plant Science 324:111423

doi: 10.1016/j.plantsci.2022.111423
[4]

Zhang H, Dong X, Wang L, Zhang J, Meng Y, et al. 2016. Construction of a genetic transformation system using the protocorm of Phalaenopsis seed germination as receptor. Journal of Henan Agricultural Sciences 45:107−111,124

doi: 10.15933/j.cnki.1004-3268.2016.08.020
[5]

Chen J, Zhu X, Zheng R, Tong Y, Peng Y, et al. 2024. Orchestrating of native Phalaenopsis flower scents lighted the way through artificial selective breeding partiality in the current resource utilization. Industrial Crops and Products 217:118850

doi: 10.1016/j.indcrop.2024.118850
[6]

Cai J, Liu X, Vanneste K, Proost S, Tsai WC, et al. 2015. The genome sequence of the orchid Phalaenopsis equestris. Nature Genetics 47:65−72

doi: 10.1038/ng.3149
[7]

Hsiao YY, Tsai WC, Kuoh CS, Huang TH, Wang HC, et al. 2006. Comparison of transcripts in Phalaenopsis bellina and Phalaenopsis equestris (Orchidaceae) flowers to deduce monoterpene biosynthesis pathway. BMC Plant Biology 6:14

doi: 10.1186/1471-2229-6-14
[8]

Zhang H, Lin P, Liu Y, Huang C, Huang G, et al. 2022. Development of SLAF-sequence and multiplex SNaPshot panels for population genetic diversity analysis and construction of DNA fingerprints for sugarcane. Genes 13:1477

doi: 10.3390/genes13081477
[9]

Wang Y, Lv H, Xiang X, Yang A, Feng Q, et al. 2021. Construction of a SNP fingerprinting database and population genetic analysis of cigar tobacco germplasm resources in China. Frontiers in Plant Science 12:618133

doi: 10.3389/fpls.2021.618133
[10]

Zhao X, Li S, Guo R, Zeng X, Wen J, et al. 2018. DNA fingerprinting of Chinese Brassica napus was constructed by using SNP chip. Acta Agronomica Sinica 44:956−65

doi: 10.3724/SP.J.1006.2018.00956
[11]

Zhang J, Yang J, Fu S, Ren J, Zhang X, et al. 2022. Comparison of DUS testing and SNP fingerprinting for variety identification in cucumber. Horticultural Plant Journal 8:575−82

doi: 10.1016/j.hpj.2022.07.002
[12]

Rasheed A, Wen W, Gao F, Zhai S, Jin H, et al. 2016. Development and validation of KASP assays for genes underpinning key economic traits in bread wheat. Theoretical and Applied Genetics 129:1843−60

doi: 10.1007/s00122-016-2743-x
[13]

Yang G, Chen S, Chen L, Sun K, Huang C, et al. 2019. Development of a core SNP arrays based on the KASP method for molecular breeding of rice. Rice 12:21

doi: 10.1186/s12284-019-0272-3
[14]

Chen H, Xie W, He H, Yu H, Chen W, et al. 2014. A high-density SNP genotyping array for rice biology and molecular breeding. Molecular Plant 7:541−53

doi: 10.1093/mp/sst135
[15]

Byers RL, Harker DB, Yourstone SM, Maughan PJ, Udall JA. 2012. Development and mapping of SNP assays in allotetraploid cotton. Theoretical and Applied Genetics 124:1201−14

doi: 10.1007/s00122-011-1780-8
[16]

Shen Y, Wang J, Shaw RK, Yu H, Sheng X, et al. 2021. Development of GBTS and KASP panels for genetic diversity, population structure, and fingerprinting of a large collection of broccoli (Brassica oleracea L. var. italica) in China. Frontiers in Plant Science 12:655254

doi: 10.3389/fpls.2021.655254
[17]

Zhang P, Guan JJ, Huang QM, Liu YF, Zhang JH. 2016. Phenotypic diversity of phalaenopsis based on statistic analysis and data mining. the Netherlands: IOS Press. Volume 281. pp. 486−93. doi: 10.3233/978-1-61499-619-4-486

[18]

Feng X, Zhao X, Yue L, Wu H, Li D. 2021. Cross-compatibility analysis of 29 Phalaenopsis cultivars. Molecular Plant Breeding 19:4752−58

[19]

Hu J, Zhu J, Xu HM. 2000. Methods of constructing core collections by stepwise clustering with three sampling strategies based on the genotypic values of crops. Theoretical and Applied Genetics 101:264−68

doi: 10.1007/s001220051478
[20]

Yin S, Li C, Huang X, Li S, Cheng X. 2022. Study on floral traits and phenotypic diversity of Chinese rose. Journal of Southwest Forestry University: Natural Science 42:38−47

doi: 10.11929/j.swfu.202105060
[21]

Celik I, Gurbuz N, Uncu AT, Frary A, Doganlar S. 2017. Genome-wide SNP discovery and QTL mapping for fruit quality traits in inbred backcross lines (IBLs) of solanum pimpinellifolium using genotyping by sequencing. BMC Genomics 18:1

doi: 10.1186/s12864-016-3406-7
[22]

Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, et al. 2016. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536:285−91

doi: 10.1038/nature19057
[23]

Jia H, Jiao Y, Wang G, Li Y, Jia H, et al. 2015. Genetic diversity of male and female Chinese bayberry (Myrica rubra) populations and identification of sex-associated markers. BMC Genomics 16:394

doi: 10.1186/s12864-015-1602-5
[24]

Panigrahi P, Panigrahi KK, Bhattacharya S. 2018. SSR marker based DNA fingerprinting and diversity studies in mustard (Brassica juncea). Electronic Journal of Plant Breeding 9:25−37

doi: 10.5958/0975-928X.2018.00004.2
[25]

Xu Y, Wang B, Zhang J, Zhang J, Li J. 2022. Application of molecular marker technology to improve crop variety protection and supervision. Acta Agronomica Sinica 48:1853−70

[26]

Zhou Z, Jiang Y, Wang Z, Gou Z, Lyu J, et al. 2016. Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nature Biotechnology 34:408−41

doi: 10.1038/nbt.3096
[27]

Lu Y, Yan J, Guimarães CT, Taba S, Hao Z, et al. 2009. Molecular characterization of global maize breeding germplasm based on genome-wide single nucleotide polymorphisms. Theoretical and Applied Genetics 120:93−115

doi: 10.1007/s00122-009-1162-7
[28]

Guo S, Zhao S, Sun H, Wang X, Wu S, et al. 2019. Resequencing of 414 cultivated and wild watermelon accessions identifies selection for fruit quality traits. Nature Genetics 51:1616−23

doi: 10.1038/s41588-019-0518-4
[29]

Ye C, Tang W, Wu D, Jia L, Qiu J, et al. 2019. Genomic evidence of human selection on Vavilovian mimicry. Nature Ecology & Evolution 3:1474−82

doi: 10.1038/s41559-019-0976-1
[30]

Tamura K, Stecher G, Kumar S. 2021. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution 38:3022−27

doi: 10.1093/molbev/msab120
[31]

Jeong KS, Shin H, Lee SJ, Kim HS, Kim JY, et al. 2018. Genetic characteristics of Y-chromosome short tandem repeat haplotypes from cigarette butt samples presumed to be smoked by North Korean men. Genes & Genomics 40:819−24

doi: 10.1007/s13258-018-0701-5
[32]

van Tongerlo E, van Ieperen W, Dieleman JA, Marcelis LFM. 2021. Vegetative traits can predict flowering quality in Phalaenopsis orchids despite large genotypic variation in response to light and temperature. PLoS ONE 16:e0251405

doi: 10.1371/journal.pone.0251405
[33]

Wen X. 2015. Bayesian model comparison in genetic association analysis: linear mixed modeling and SNP set testing. Biostatistics 16:701−12

doi: 10.1093/biostatistics/kxv009
[34]

Hemmings SJ, Rhodes JL, Fisher MC. 2023. Long-read sequencing and de novo genome assembly of three Aspergillus fumigatus genomes. Mycopathologia 188:409−12

doi: 10.1007/s11046-023-00740-2
[35]

Yu J, Pressoir G, Briggs WH, Bi IV, Yamasaki M, et al. 2006. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nature Genetics 38:203−08

doi: 10.1038/ng1702
[36]

Chang CC, Lin HC, Lin IP, Chow TY, Chen HH, et al. 2006. The chloroplast genome of Phalaenopsis aphrodite (Orchidaceae): comparative analysis of evolutionary rate with that of grasses and its phylogenetic implications. Molecular Biology and Evolution 23:279−91

doi: 10.1093/molbev/msj029
[37]

Hsu CC, Chung YL, Chen TC, Lee YL, Kuo YT, et al. 2011. An overview of the Phalaenopsis orchid genome through BAC end sequence analysis. BMC Plant Biology 11:3

doi: 10.1186/1471-2229-11-3