[1]

Wang Y, Deng C, Liu Y, Niu Z, Li Y. 2018. Identifying change in spatial accumulation of soil salinity in an inland river watershed, China. Science of the Total Environment 621:177−85

doi: 10.1016/j.scitotenv.2017.11.222
[2]

Singh A. 2021. Soil salinization management for sustainable development: A review. Journal of Environmental Management 277:111383

doi: 10.1016/j.jenvman.2020.111383
[3]

Singh A. 2018. Alternative management options for irrigation-induced salinization and waterlogging under different climatic conditions. Ecological Indicators 90:184−92

doi: 10.1016/j.ecolind.2018.03.014
[4]

Cai D, Xu Y, Zhao F, Zhang Y, Duan H, et al. 2021. Improved salt tolerance of Chenopodium quinoa Willd. contributed by Pseudomonas sp. strain M30-35. PeerJ 9:e10702

doi: 10.7717/peerj.10702
[5]

Gulzar S, Khan MA, Ungar IA. 2003. Salt tolerance of a coastal salt marsh grass. Communications in Soil Science and Plant Analysis 34:2595−605

doi: 10.1081/CSS-120024787
[6]

Wu C, Yin YL, Yang XM, Feng LJ, Tang HX, et al. 2019. A Markov-based model for predicting the development trend of soil microbial communities in saline-alkali land in Wudi County. Concurrency and Computation: Practice and Experience 31:e4754

doi: 10.1002/cpe.4754
[7]

Islam F, Yasmeen T, Arif MS, Ali S, Ali B, et al. 2016. Plant growth promoting bacteria confers salt tolerance in Vigna radiata by up-regulating antioxidant defense and biological soil fertility. Plant Growth Regulation 80:23−36

doi: 10.1007/s10725-015-0142-y
[8]

Fang X, Li W, Yuan H, Chen H, Bo C, et al. 2021. Mutation of ZmWRKY86 confers enhanced salt stress tolerance in maize. Plant Physiology and Biochemistry 167:840−50

doi: 10.1016/j.plaphy.2021.09.010
[9]

Feng L, Xu W, Sun N, Mandal SC, Wang H, et al. 2020. Efficient improvement of soil salinization through phytoremediation induced by chemical remediation in extreme arid land northwest China. International Journal of Phytoremediation 22:334−41

doi: 10.1080/15226514.2019.1663483
[10]

Wang Y, Sun Q, Liu J, Wang L, Wu X, et al. 2022. Suaeda salsa root-associated microorganisms could effectively improve maize growth and resistance under salt stress. Microbiology Spectrum 10:e0134922

doi: 10.1128/spectrum.01349-22
[11]

Thomas SC, Frye S, Gale N, Garmon M, Launchbury R, et al. 2013. Biochar mitigates negative effects of salt additions on two herbaceous plant species. Journal of Environmental Management 129:62−68

doi: 10.1016/j.jenvman.2013.05.057
[12]

Lau JA, Lennon JT. 2011. Evolutionary ecology of plant-microbe interactions: soil microbial structure alters selection on plant traits. New Phytologist 192:215−24

doi: 10.1111/j.1469-8137.2011.03790.x
[13]

Kumar A, Singh S, Gaurav AK, Srivastava S, Verma JP. 2020. Plant growth-promoting bacteria: biological tools for the mitigation of salinity stress in plants. Frontiers in Microbiology 11:1216

doi: 10.3389/fmicb.2020.01216
[14]

Aly AH, Debbab A, Proksch P. 2011. Fungal endophytes: unique plant inhabitants with great promises. Applied Microbiology and Biotechnology 90:1829−45

doi: 10.1007/s00253-011-3270-y
[15]

Canassa F, Tall S, Moral RA, de Lara IAR, Delalibera I, et al. 2019. Effects of bean seed treatment by the entomopathogenic fungi Metarhizium robertsii and Beauveria bassiana on plant growth, spider mite populations and behavior of predatory mites. Biological Control 132:199−208

doi: 10.1016/j.biocontrol.2019.02.003
[16]

Abeywickrama PD, Qian N, Jayawardena RS, Li Y, Zhang W, et al. 2023. Endophytic fungi in green manure crops; friends or foe? Mycosphere 14:1−106

doi: 10.5943/mycosphere/14/1/1
[17]

Manasa KM, Vasanthakumari MM, Nataraja K, Shaanker R. 2020. Endophytic fungi of salt adapted ipomea pes-caprae L. R. Br: their possible role in inducing salinity tolerance in paddy (Oryza sativa L.). Current Science 118:1448−53

doi: 10.18520/CS/V118/I9/1448-1453
[18]

Moghaddam MSH, Safaie N, Soltani J, Hagh-Doust N. 2021. Desert-adapted fungal endophytes induce salinity and drought stress resistance in model crops. Plant Physiology and Biochemistry 160:225−38

doi: 10.1016/j.plaphy.2021.01.022
[19]

Wang J, Hou W, Christensen MJ, Xia C, Chen T, et al. 2021. The fungal endophyte Epichloë gansuensis increases NaCl-tolerance in Achnatherum inebrians through enhancing the activity of plasma membrane H+-ATPase and glucose-6-phosphate dehydrogenase. Science China-Life Sciences 64:452−65

doi: 10.1007/s11427-020-1674-y
[20]

Zou Y, Zhang L, Liu R, He L, Hu Z, et al. 2023. Endophytic fungus Falciphora oryzae enhances salt tolerance by modulating ion homeostasis and antioxidant defense systems in pepper. Physiologia Plantarum 175:e14059

doi: 10.1111/ppl.14059
[21]

Cui N, Cai M, Zhang X, Zeng R, Zhou L, et al. 2024. Nitrogen removal performance and mechanism in constructed wetlands under saline conditions: Role of Canna indica inoculated with Piriformospora indica. Bioresource Technology 408:131218

doi: 10.1016/j.biortech.2024.131218
[22]

Farhangi-Abriz S, Torabian S. 2017. Antioxidant enzyme and osmotic adjustment changes in bean seedlings as affected by biochar under salt stress. Ecotoxicology and Environmental Safety 137:64−70

doi: 10.1016/j.ecoenv.2016.11.029
[23]

Pan X, Qin Y, Yuan Z. 2018. Potential of a halophyte-associated endophytic fungus for sustaining Chinese white poplar growth under salinity. Symbiosis 76:109−16

doi: 10.1007/s13199-018-0541-8
[24]

Prajapati P, Yadav M, Nishad JH, Gautam VS, Kharwar RN. 2024. Salt tolerant fungal endophytes alleviate the growth and yield of saline-affected wheat genotype PBW-343. Microbiological Research 278:127514

doi: 10.1016/j.micres.2023.127514
[25]

Wang ZS, Li N, Xu YQ, Wang W, Liu Y. 2024. Functional activity of endophytic bacteria G9H01 with high salt tolerance and anti-Magnaporthe oryzae that isolated from saline-alkali-tolerant rice. Science of the Total Environment 926:171822

doi: 10.1016/j.scitotenv.2024.171822
[26]

Ting ASY, Meon S, Kadir J, Radu S, Singh G. 2008. Endophytic microorganisms as potential growth promoters of banana. BioControll 53:541−53

doi: 10.1007/s10526-007-9093-1
[27]

Huong NTM, Hoai PTT, Thao PTH, Huong TT, Chinh VD. 2022. Growth Stimulation, Phosphate Resolution, and Resistance to Fungal Pathogens of Some Endogenous Fungal Strains in the Rhizospheres of Medicinal Plants in Vietnam. Molecules 27:5051

doi: 10.3390/molecules27165051
[28]

Li Y, Zhang T, Kang Y, Wang P, Yu W, et al. 2023. Integrated metabolome, transcriptome analysis, and multi-flux full-length sequencing offer novel insights into the function of lignin biosynthesis as a Sesuvium portulacastrum response to salt stress. International Journal of Biological Macromolecules 237:124222

doi: 10.1016/j.ijbiomac.2023.124222
[29]

Lokhande VH, Srivastava S, Patade VY, Dwivedi S, Tripathi RD, et al. 2011. Investigation of arsenic accumulation and tolerance potential of Sesuvium portulacastrum (L. ) L. Chemosphere 82:529−34

doi: 10.1016/j.chemosphere.2010.10.059
[30]

Zhou Y, Zhu Y, Li W, Zhang T, Li Y, et al. 2023. Heterologous expression of Sesuvium portulacastrum SOS-related genes confer salt tolerance in yeast. Acta Physiologiae Plantarum 45:58

doi: 10.1007/s11738-023-03518-7
[31]

Wang P, Zhang T, Li Y, Kang Y, Liu W, et al. 2023. Isolation, identification and salt tolerant screening of endophytic fungi strains in Sesuvium portulacastrum roots. Molecular Plant Breeding 23(2):532−42 (In Chinese)

doi: 10.13271/j.mpb.023.000532
[32]

White TJ, Bruns S, Lee S, Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols: a Guide to Methods and Applications 31:315−22

doi: 10.1016/B978-0-12-372180-8.50042-1
[33]

Rideout JR, He Y, Navas-Molina JA, Walters WA, Ursell LK, et al. 2014. Subsampled open-reference clustering creates consistent, comprehensive OTU definitions and scales to billions of sequences. PeerJ 2:e545

doi: 10.7717/peerj.545
[34]

Sun X, Guo LD, Hyde KD. 2011. Community composition of endophytic fungi in Acer truncatum and their role in decomposition. Fungal Diversity 47:85−95

doi: 10.1007/s13225-010-0086-5
[35]

Santos JM, Correia VG, Phillips AJL. 2010. Primers for mating-type diagnosis in Diaporthe and Phomopsis: their use in teleomorph induction in vitro and biological species definition. Fungal Biology 114:255−70

doi: 10.1016/j.funbio.2010.01.007
[36]

Fan M, Chen X, Luo X, Zhang H, Liu Y, et al. 2020. Diversity of endophytic fungi from the leaves of Vaccinium dunalianum. Letters in Applied Microbiology 71:479−89

doi: 10.1111/lam.13345
[37]

Li P, Wu Z, Liu T, Wang Y. 2016. Biodiversity, phylogeny, and antifungal functions of endophytic fungi associated with Zanthoxylum bungeanum. International Journal of Molecular Sciences 17:1541

doi: 10.3390/ijms17091541
[38]

Petrini O, Stone J, Carroll FE. 1982. Endophytic fungi in evergreen shrubs in western Oregon: A preliminary study. Canadian Journal of Botany 60:789−96

doi: 10.1139/b82-102
[39]

Dai Z, Yuan R, Yang X, Xi H, Zhou M, et al. 2024. Salinity-responsive key endophytic bacteria in the propagules of Kandelia obovata enhance salt tolerance in rice. Journal of Integrative Agriculture In press

doi: 10.1016/j.jia.2024.01.033
[40]

Li Y, Hu Y, Liu W, Xia H, Liu Y, et al. 2024. Heterologous expression of Sesuvium portulacastrum SpCIPK2 confers salt tolerance in transgenic Arabidopsis thaliana. Physiologia Plantarum 176:e14654

doi: 10.1111/ppl.14654
[41]

Yao YQ, Lan F, Qiao YM, Wei JG, Huang RS, et al. 2017. Endophytic fungi harbored in the root of Sophora tonkinensis Gapnep: Diversity and biocontrol potential against phytopathogens. Microbiologyopen 6:e00437

doi: 10.1002/mbo3.437
[42]

Ikram M, Ali N, Jan G, Jan FG, Pervez R, et al. 2023. Isolation of endopHytic fungi from halopHytic plants and their identification and screening for auxin production and other plant growth promoting traits. Journal of Plant Growth Regulation 42:4707−23

doi: 10.1007/s00344-022-10685-3
[43]

González-Teuber M, Vilo C, Bascuñán-Godoy L. 2017. Molecular characterization of endophytic fungi associated with the roots of Chenopodium quinoa inhabiting the Atacama Desert, Chile. Genomic Data 11:109−12

doi: 10.1016/j.gdata.2016.12.015
[44]

Poveda J, Abril-Urias P, Escobar C. 2020. Biological control of plant-parasitic nematodes by filamentous fungi inducers of resistance: Trichoderma, mycorrhizal and endophytic fungi. Frontiers in Microbiology 11:992

doi: 10.3389/fmicb.2020.00992
[45]

Bitas V, McCartney N, Li N, Demers J, Kim JE, et al. 2015. Fusarium oxysporum volatiles enhance plant growth via affecting auxin transport and signaling. Frontiers in Microbiology 6:1248

doi: 10.3389/fmicb.2015.01248
[46]

Zhu Y, ShaoY, Li L, Zhao L, Zhang M, et al. 2022. The plant growth-promoting endophytic Fusarium oxysporum GG22 enhances Rehmannia glutinosa secondary metabolites accumulation. Industrial Crops and Products 182:114881

doi: 10.1016/j.indcrop.2022.114881
[47]

Feng Q, Cao S, Liao S, Wassie M, Sun X, et al. 2023. Fusarium equiseti-inoculation altered rhizosphere soil microbial community, potentially driving perennial ryegrass growth and salt tolerance. Science of the Total Environment 871:162153

doi: 10.1016/j.scitotenv.2023.162153
[48]

Strong WL. 2016. Biased richness and evenness relationships within Shannon–Wiener index values. Ecological Indicators 67:703−13

doi: 10.1016/j.ecolind.2016.03.043
[49]

Hassani A, Azapagic A, Shokri N. 2021. Global predictions of primary soil salinization under changing climate in the 21st century. Nature Communications 12:6663

doi: 10.1038/s41467-021-26907-3
[50]

Iqbal T. 2018. Rice straw amendment ameliorates harmful effect of salinity and increases nitrogen availability in a saline paddy soil. Journal of the Saudi Society of Agricultural Sciences 17:445−53

doi: 10.1016/j.jssas.2016.11.002
[51]

Li JL, Sun X, Zheng Y, Lü PP, Wang YL, et al. 2020. Diversity and community of culturable endophytic fungi from stems and roots of desert halophytes in northwest china. Mycokeys 62:75−95

doi: 10.3897/mycokeys.62.38923
[52]

Wu S, Xing C, Zhu J. 2022. Analysis of climate characteristics in Hainan lsland. Journal of Tropical Biology 13:315−23(In Chinese)

doi: 10.15886/j.cnki.rdswxb.2022.04.001
[53]

Ruan X, Ding G, Chen Y, Si T, Ousmane AS, et al. 2022. Collection of Sesuvium portulacastrum Germplasm in Hainan Island and Salt Tolerance Test. Journal of Plant Genetic Resources 23:691−705(In Chinese)

doi: 10.13430/j.cnki.jpgr.20211029001
[54]

Li Z, Zhu Z, Qian K, Tang B, Han B, et al. 2024. Intraspecific diploidization of a halophyte root fungus drives heterosis. Nature Communications 15:5872

doi: 10.1038/s41467-024-49468-7
[55]

Redman RS, Sheehan KB, Stout RG, Rodriguez RJ, Henson JM. 2002. Thermotolerance generated by plant/fungal symbiosis. Science 298:1581

doi: 10.1126/science.1072191
[56]

Redman RS, Kim YO, Woodward CJDA, Greer C, Espino L, et al. 2011. Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis: A strategy for mitigating impacts of climate change. PLoS ONE 6:e014823

doi: 10.1371/journal.pone.0014823
[57]

Maciá-Vicente JG, Rosso LC, Ciancio A, Jansson HB, Lopez-Llorca LV. 2009. Colonisation of barley roots by endophytic Fusarium equiseti and Pochonia chlamydosporia: effects on plant growth and disease. Annals of Applied Biology 155:391−401

doi: 10.1111/j.1744-7348.2009.00352.x
[58]

Lee K, Pan JJ, May G. 2009. Endophytic Fusarium verticillioides reduces disease severity caused by Ustilago maydis on maize. FEMS Microbiology Letters 299:31−37

doi: 10.1111/j.1574-6968.2009.01719.x
[59]

Kavroulakis N, Doupis G, Papadakis IE, Ehaliotis C, Papadopoulou KK. 2018. Tolerance of tomato plants to water stress is improved by the root endophyte Fusarium solani FsK. Rhizosphere 6:77−85

doi: 10.1016/j.rhisph.2018.04.003
[60]

Jalili B, Bagheri H, Azadi S, Soltani J. 2020. Identification and salt tolerance evaluation of endophyte fungi isolates from halophyte plants. International Journal of Environmental Science and Technology 17:3459−66

doi: 10.1007/s13762-020-02626-y
[61]

Nagarajan C, Natarajan K. 1999. The use of Box-Behnken design of experiments to study in vitro salt tolerance by Pisolithus tinctorius. World Journal of Microbiology and Biotechnology 15:197−203

doi: 10.1023/A:1008899204502
[62]

Bakhshi S, Eshghi S, Banihashemi Z. 2023. Application of candidate endophytic fungi isolated from extreme desert adapted trees to mitigate the adverse effects of drought stress on maize (Zea mays L.). Plant Physiology and Biochemistry 202:107961

doi: 10.1016/j.plaphy.2023.107961
[63]

Chen Y, Han Y, Kong X, Kang H, Ren Y, et al. 2017. Ectopic expression of wheat expansin gene TaEXPA2 improved the salt tolerance of transgenic tobacco by regulating Na+/K+ and antioxidant competence. Physiology Plantarum 159:161−77

doi: 10.1111/ppl.12492
[64]

Li M, Chen R, Jiang Q, Sun X, Zhang H, et al. 2021. GmNAC06, a NAC domain transcription factor enhances salt stress tolerance in soybean. Plant Molecular Biology 105:333−45

doi: 10.1007/s11103-020-01091-y
[65]

Ding X, Liu B, Liu H, Sun X, Sun X, et al. 2023. A new CIPK gene CmCIPK8 enhances salt tolerance in transgenic chrysanthemum. Scientia Horticulturae 308:111562

doi: 10.1016/j.scienta.2022.111562