[1]

Lu X, Hou H, Fang D, Hu Q, Chen J, et al. 2022. Identification and characterization of volatile compounds in Lentinula edodes during vacuum freeze-drying. Journal of Food Biochemistry 46(6):e13814

doi: 10.1111/jfbc.13814
[2]

Chen DW, Zhang M. 2007. Non-volatile taste active compounds in the meat of Chinese mitten crab (Eriocheir sinensis). Food Chemistry 104(3):1200−05

doi: 10.1016/j.foodchem.2007.01.042
[3]

Wu G. 2009. Amino acids: metabolism, functions, and nutrition. Amino Acids 37(1):1−17

doi: 10.1007/s00726-009-0269-0
[4]

Wu J, Huang J, Hong Y, Zhang H, Ding M, et al. 2018. De novo transcriptome sequencing of Torreya grandis reveals gene regulation in sciadonic acid biosynthesis pathway. Industrial Crops and Products 120:47−60

doi: 10.1016/j.indcrop.2018.04.041
[5]

Solms J, Vuataz L, Egli RH. 1965. The taste of L- and D-amino acids. Experientia 21(12):692−94

doi: 10.1007/BF02138474
[6]

Fukuda T, Okazaki K, Watanabe A, Shinano T, Oka N. 2016. GC–MS based metabolite profiling for flavor characterization of Brassica crops grown with different fertilizer application. Metabolomics 12(2):20

doi: 10.1007/s11306-015-0938-9
[7]

Gao Q, Jiang H, Tang F, Cao H, Wu X, et al. 2019. Evaluation of the bitter components of bamboo shoots using a metabolomics approach. Food & Function 10(1):90−98

doi: 10.1039/C8FO01820K
[8]

Adams DO, Yang SF. 1979. Ethylene biosynthesis: identification of 1-aminocyclopropane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene. Proceedings of the National Academy of Sciences of the United States of America 76(1):170−74

doi: 10.1073/pnas.76.1.170
[9]

Defilippi G, Dandekar AM, Kader AA. 2005. Relationship of ethylene biosynthesis to volatile production, related enzymes, and precursor availability in apple peel and flesh tissues. Journal of Agricultural and Food Chemistry 53(8):3133−41

doi: 10.1021/jf047892x
[10]

Zhang Z, Chen W, Tao L, Wei X, Gao L, et al. 2023. Ethylene treatment promotes umami taste-active amino acids accumulation of Torreya grandis nuts post-harvest by comparative chemical and transcript analyses. Food Chemistry 408:135214

doi: 10.1016/j.foodchem.2022.135214
[11]

Ban YJ, Song YH, Kim JY, Cha JY, Ali I, et al. 2021. A significant change in free amino acids of soybean (Glycine max L. Merr) through ethylene application. Molecules 26(4):1128

doi: 10.3390/molecules26041128
[12]

Gao HY, Zhu BZ, Zhu HL, Zhang YL, Xie YH, et al. 2007. Effect of suppression of ethylene biosynthesis on flavor products in tomato fruits. Russian Journal of Plant Physiology 54(1):80−88

doi: 10.1134/S1021443707010128
[13]

Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114−20

doi: 10.1093/bioinformatics/btu170
[14]

Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. 2019. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nature Biotechnology 37(8):907−15

doi: 10.1038/s41587-019-0201-4
[15]

Ghosh S, Chan CKK. 2016. Analysis of RNA-seq data using tophat and cufflinks. In Plant Bioinformatics, ed. Edwards D. New York, NY: Humana Press. Volume 1374. pp. 339−61. doi: 10.1007/978-1-4939-3167-5_18

[16]

Yuan W, Zhao Z, Kimura S, Toko K. 2024. Development of taste sensor with lipid/polymer membranes for detection of umami substances using surface modification. Biosensors 14(2):95

doi: 10.3390/bios14020095
[17]

Liu H, Jiang T, Xue J, Chen X, Xuan Z, et al. 2021. Taste profile characterization of chinese mitten crab (Eriocheir sinensis) meat using electronic tongue analysis. Sensors and Materials 33(7):2537−47

doi: 10.18494/SAM.2021.3444
[18]

Wang C, Zhou J, Zhang S, Gao X, Yang Y, et al. 2023. Combined metabolome and transcriptome analysis elucidates sugar accumulation in Wucai (Brassica campestris L.). International Journal of Molecular Sciences 24(5):4816

doi: 10.3390/ijms24054816
[19]

Wang Y, Li Y, Wu X, Wu X, Feng Z, et al. 2022. Elucidation of the flavor aspects and flavor-associated genomic regions in bottle gourd (Lagenaria siceraria) by metabolomic analysis and QTL-seq. Foods 11(16):2450

doi: 10.3390/foods11162450
[20]

Mei S, He Z, Zhang J. 2022. Identification and analysis of major flavor compounds in radish taproots by widely targeted metabolomics. Frontiers in Nutrition 9:889407

doi: 10.3389/fnut.2022.889407
[21]

Voß AC, Eilers EJ, Müller C. 2023. Fungicides cuprozin progress and SWITCH modulate primary and specialized metabolites of strawberry fruits. Journal of Agricultural and Food Chemistry 71(5):2482−92

doi: 10.1021/acs.jafc.2c06584
[22]

Jia H, Okamoto G, Hirano K. 2000. Effect of amino acid composition on the taste of 'Hakuho' peaches (Prunus persica batsch) grown under different fertilizer levels. Journal of the Japanese Society for Horticultural Science 69(2):135−40

doi: 10.2503/jjshs.69.135
[23]

Castro-Alves V, Kalbina I, Nilsen A, Aronsson M, Rosenqvist E, et al. 2021. Integration of non-target metabolomics and sensory analysis unravels vegetable plant metabolite signatures associated with sensory quality: a case study using dill (Anethum graveolens). Food Chemistry 344:128714

doi: 10.1016/j.foodchem.2020.128714
[24]

Jia Z, Wang Y, Wang L, Zheng Y, Jin P. 2022. Amino acid metabolomic analysis involved in flavor quality and cold tolerance in peach fruit treated with exogenous glycine betaine. Food Research International 157:111204

doi: 10.1016/j.foodres.2022.111204
[25]

Yoon GM, Kieber JJ. 2013. ACC synthase and its cognate E3 ligase are inversely regulated by light. Plant Signaling & Behavior 8(12):e26478

doi: 10.4161/psb.26478
[26]

Johansson N, Persson KO, Larsson C, Norbeck J. 2014. Comparative sequence analysis and mutagenesis of ethylene forming enzyme (EFE) 2-oxoglutarate/Fe(II)-dependent dioxygenase homologs. BMC Biochemistry 15:22

doi: 10.1186/1471-2091-15-22
[27]

Shin K, Lee S, Song WY, Lee RA, Lee I, et al. 2015. Genetic identification of ACC-RESISTANT2 reveals involvement of LYSINE HISTIDINE TRANSPORTER1 in the uptake of 1-aminocyclopropane-1-carboxylic acid in Arabidopsis thaliana. Plant and Cell Physiology 56(3):572−82

doi: 10.1093/pcp/pcu201
[28]

Ahn G, Ban YJ, Shin GI, Jeong SY, Park KH, et al. 2023. Ethylene enhances transcriptions of asparagine biosynthetic genes in soybean (Glycine max L. Merr) leaves. Plant Signaling & Behavior 18(1):2287883

doi: 10.1080/15592324.2023.2287883
[29]

Yu W, Ma P, Sheng J, Shen L. 2024. Arginine and cysteine delay postharvest ripening of tomato fruit by regulating ethylene production. Postharvest Biology and Technology 216:113052

doi: 10.1016/j.postharvbio.2024.113052
[30]

Reis L, Forney CF, Jordan M, Munro Pennell KM, Fillmore S, et al. 2020. Metabolic profile of strawberry fruit ripened on the plant following treatment with an ethylene elicitor or inhibitor. Frontiers in Plant Science 11:995

doi: 10.3389/fpls.2020.00995
[31]

Khan S, Alvi AF, Saify S, Iqbal N, Khan NA. 2024. The ethylene biosynthetic enzymes, 1-aminocyclopropane-1-carboxylate (ACC) synthase (ACS) and ACC oxidase (ACO): the less explored players in abiotic stress tolerance. Biomolecules 14(1):90

doi: 10.3390/biom14010090
[32]

El-Sharkawy I, Jones B, Gentzbittel L, Lelièvre JM, Pech JC, et al. 2004. Differential regulation of ACC synthase genes in cold-dependent and -independent ripening in pear fruit. Plant, Cell & Environment 27(10):1197−210

doi: 10.1111/j.1365-3040.2004.01218.x
[33]

Hincha DK. 2002. Cryoprotectin: a plant lipid-transfer protein homologue that stabilizes membranes during freezing. Philosophical Transactions of the Royal Society B-Biological Sciences 357(1423):909−15

doi: 10.1098/rstb.2002.1079
[34]

Sung DY, Kaplan F, Lee KJ, Guy CL. 2003. Acquired tolerance to temperature extremes. Trends in Plant Science 8(4):179−87

doi: 10.1016/S1360-1385(03)00047-5
[35]

Hu X, Liu J, Liu E, Qiao K, Gong S, et al. 2021. Arabidopsis cold-regulated plasma membrane protein Cor413pm1 is a regulator of ABA response. Biochemical and Biophysical Research Communications 561:88−92

doi: 10.1016/j.bbrc.2021.05.032
[36]

Su C, Chen K, Ding Q, Mou Y, Yang R, et al. 2018. Proteomic analysis of the function of a novel cold-regulated multispanning transmembrane protein COR413-PM1 in Arabidopsis. International Journal of Molecular Sciences 19(9):2572

doi: 10.3390/ijms19092572
[37]

Geng B, Wang Q, Huang R, Liu Y, Guo Z, et al. 2021. A novel LRR-RLK (CTLK) confers cold tolerance through regulation on the C-repeat-binding factor pathway, antioxidants, and proline accumulation. The Plant Journal 108(6):1679−89

doi: 10.1111/tpj.15535
[38]

Cheng Y, Ban Q, Mao J, Lin M, Zhu X, et al. 2023. Integrated metabolomic and transcriptomic analysis reveals that amino acid biosynthesis may determine differences in cold-tolerant and cold-sensitive tea cultivars. International Journal of Molecular Sciences 24(3):1907

doi: 10.3390/ijms24031907
[39]

Castonguay Y, Bertrand A, Michaud R, Laberge S. 2011. Cold-induced biochemical and molecular changes in alfalfa populations selectively improved for freezing tolerance. Crop Science 51(5):2132−44

doi: 10.2135/cropsci2011.02.0060
[40]

Nian F, Zhao L. 2015. Molecular characterization and expression pattern of a novel cadmium resistance gene of tobacco. Bioscience Journal 31(4):1024−29

doi: 10.14393/BJ-v31n4a2015-26138
[41]

Liu GY. 2009. Isolation, sequence identification and tissue expression profile of two novel soybean (glycine max) genes-vestitone reductase and chalcone reductase. Molecular Biology Reports 36(7):1991−94

doi: 10.1007/s11033-008-9409-y
[42]

Counter SA, Buchanan LH, Ortega F. 2009. Neurocognitive screening of lead-exposed andean adolescents and young adults. Journal of Toxicology and Environmental Health, Part A-Current issues 72(10):625−32

doi: 10.1080/15287390902769410
[43]

Clemens S, Aarts MGM, Thomine S, Verbruggen N. 2013. Plant science: the key to preventing slow cadmium poisoning. Trends in Plant Science 18(2):92−99

doi: 10.1016/j.tplants.2012.08.003
[44]

Pang B, Zuo D, Yang T, Yu J, Zhou L, et al. 2024. BcaSOD1 enhances cadmium tolerance in transgenic Arabidopsis by regulating the expression of genes related to heavy metal detoxification and arginine synthesis. Plant Physiology and Biochemistry 206:108299

doi: 10.1016/j.plaphy.2023.108299
[45]

Kunihiro S, Saito T, Matsuda T, Inoue M, Kuramata M, et al. 2013. Rice DEP1, encoding a highly cysteine-rich G protein γ subunit, confers cadmium tolerance on yeast cells and plants. Journal of Experimental Botany 64(14):4517−27

doi: 10.1093/jxb/ert267
[46]

Tomas M, Pagani MA, Andreo CS, Capdevila M, Atrian S, et al. 2015. Sunflower metallothionein family characterisation. Study of the Zn(II)- and Cd(II)-binding abilities of the HaMT1 and HaMT2 isoforms. Journal of Inorganic Biochemistry 148:35−48

doi: 10.1016/j.jinorgbio.2015.02.016
[47]

Walsh P, Bursać D, Law YC, Cyr D, Lithgow T. 2004. The J-protein family: modulating protein assembly, disassembly and translocation. Embo Reports 5(6):567−71

doi: 10.1038/sj.embor.7400172
[48]

Solana JC, Bernardo L, Moreno J, Aguado B, Requena JM. 2022. The astonishing large family of HSP40/DnaJ proteins existing in Leishmania. Genes 13(5):742

doi: 10.3390/genes13050742
[49]

Pulido P, Leister D. 2018. Novel DNAJ-related proteins in Arabidopsis thaliana. New Phytologist 217(2):480−90

doi: 10.1111/nph.14827
[50]

Boston RS, Viitanen PV, Vierling E. 1996. Molecular chaperones and protein folding in plants. Plant Molecular Biology 32(1−2):191−222

doi: 10.1007/BF00039383
[51]

Wang W, Vinocur B, Shoseyov O, Altman A. 2004. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends in Plant Science 9(5):244−52

doi: 10.1016/j.tplants.2004.03.006
[52]

Gołaś E, Maisuradze GG, Senet P, Ołdziej S, Czaplewski C, et al. 2012. Simulation of the opening and closing of Hsp70 chaperones by coarse-grained molecular dynamics. Journal of Chemical Theory and Computation 8(5):1750−64

doi: 10.1021/ct200680g
[53]

Qiu XB, Shao YM, Miao S, Wang L. 2006. The diversity of the DnaJ/Hsp40 family, the crucial partners for Hsp70 chaperones. Cellular and Molecular Life Sciences 63(22):2560−70

doi: 10.1007/s00018-006-6192-6
[54]

Astl L, Verkhivker GM. 2020. Dynamic view of allosteric regulation in the Hsp70 chaperones by J-domain cochaperone and post-translational modifications: computational analysis of Hsp70 mechanisms by exploring conformational landscapes and residue interaction networks. Journal of Chemical Information and Modeling 60(3):1614−31

doi: 10.1021/acs.jcim.9b01045
[55]

Kampinga HH, Craig EA. 2010. The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nature Reviews Molecular Cell Biology 11(8):579−92

doi: 10.1038/nrm2941
[56]

Faust O, Abayev-Avraham M, Wentink AS, Maurer M, Nillegoda NB, et al. 2020. HSP40 proteins use class-specific regulation to drive HSP70 functional diversity. Nature 587(7834):489−94

doi: 10.1038/s41586-020-2906-4