[1]

Pangallo D, Simonovicová A, Chovanová K, Ferianc P. 2007. Wooden art objects and the museum environment: identification and biodegradative characteristics of isolated microflora. Letters in Applied Microbiology 45:87−94

doi: 10.1111/j.1472-765X.2007.02138.x
[2]

Boniek D, Bonadio L, Santos de Abreu C, dos Santos AFB, de Resende Stoianoff MA. 2018. Fungal bioprospecting and antifungal treatment on a deteriorated Brazilian contemporary painting. Letters in Applied Microbiology 67(4):337−42

doi: 10.1111/lam.13054
[3]

da Conceição Lopes Casanova M, Pinheiro AC. 2021. Portuguese archives and libraries: a century of preservation and conservation practices for the control of biodeterioration. Conservar Património 36:46−61

doi: 10.14568/cp2020004
[4]

Mecklenburg MF. 2020. Methods and materials and the durability of canvas paintings: a preface to the topical collection failure mechanisms in Picasso's paintings. SN Applied Sciences 2:2182

doi: 10.1007/s42452-020-03832-6
[5]

Ciferri O. 1999. Microbial degradation of paintings. Applied and Environmental Microbiology 65(3):879−85

doi: 10.1128/AEM.65.3.879-885
[6]

Zucconi L, Canini F, Isola D, Caneva G. 2022. Fungi affecting wall paintings of historical value: a worldwide meta-analysis of their detected diversity. Applied Sciences 12(6):2988

doi: 10.3390/app12062988
[7]

Cappitelli F, Cattò C, Villa F. 2020. The control of cultural heritage microbial deterioration. Microorganisms 8(10):1542

doi: 10.3390/microorganisms8101542
[8]

De Leo F, Isola D. 2022. The role of fungi in biodeterioration of cultural heritage: new insights for their control. Applied Sciences 12(20):10490

doi: 10.3390/app122010490
[9]

Zalar P, Graf Hriberšek D, Gostinčar C, Breskvar M, Džeroski S, et al. 2023. Xerophilic fungi contaminating historically valuable easel paintings from Slovenia. Frontiers in Microbiology 14:1258670

doi: 10.3389/fmicb.2023.1258670
[10]

Branysova T, Demnerova K, Durovic M, Stiborova H. 2022. Microbial biodeterioration of cultural heritage and identification of the active agents over the last two decades. Journal of Cultural Heritage 55:245−60

doi: 10.1016/j.culher.2022.03.013
[11]

Pérez-Gandarillas L, Manteca C, Yedra Á, Casas A. 2024. Conservation and protection treatments for cultural heritage: insights and trends from a bibliometric analysis. Coatings 14(8):1027

doi: 10.3390/coatings14081027
[12]

Martins GA, Bicas JL. 2024. Antifungal activity of essential oils of tea tree, oregano, thyme, and cinnamon, and their components. Brazilian Journal of Food Technology 27:e2023071−72

doi: 10.1590/1981-6723.07123
[13]

Sala-Luis A, Oliveira-Urquiri H, Bosch-Roig P, Martín-Rey S. 2024. Eco-sustainable approaches to prevent and/or eradicate fungal biodeterioration on easel painting. Coatings 14(1):124

doi: 10.3390/coatings14010124
[14]

Palla F, Bruno M, Mercurio F, Tantillo A, Rotolo V. 2020. Essential oils as natural biocides in conservation of cultural heritage. Molecules 25:730

doi: 10.3390/molecules25030730
[15]

Soffritti I, D'Accolti M, Lanzoni L, Volta A, Bisi M, et al. 2019. The potential use of microorganisms as restorative agents: an update. Sustainability 11(14):3853

doi: 10.3390/su11143853
[16]

Salvadori O, Municchia AC. 2016. The role of fungi and lichens in the biodeterioration of stone monuments. The Open Conference Proceedings Journal 7:39−54

doi: 10.2174/2210289201607020039
[17]

Resende MA, Rezende GDC, Viana EV, Becker TW, Warscheid T. 1996. Acid production by fungi isolated from historic monuments in the Brazilian state of Minas Gerais. Biodegradation & Biodeterioration in Latin America, Mircen/UNEP/UNESCO/ICRO-FEPAGRO/UFRGS), eds. Gaylarde CC, de Sa ELS, Gaylarde PM. Porto Alegre, Brazil. pp. 65−67.

[18]

Boniek D, Santos de Abreu C, dos Santos AFB, de Resende Stoianoff MA. 2021. Evaluation of microbiological air parameters and the fungal community involved in the potential risks of biodeterioration in a cultural heritage of humanity, Ouro Preto, Brazil. Folia Microbiologica 66:797−807

doi: 10.1007/s12223-021-00880-2
[19]

Hoog GS, Guarro J, Gené J, Figueras MJ, de Hoog GS, et al. 2000. Atlas of clinical fungi. 2nd Edition. Utrecht, Netherlands: Centraalbureau voor Schimmelcultures (CBS). viii + 1126 pp.

[20]

Riddell RW. 1950. Permanent stained mycological preparations obtained by slide culture. Mycologia 42(2):265−70

doi: 10.1080/00275514.1950.12017830
[21]

de Menezes GCA, Porto BA, Amorim SS, Zani CL, de Almeida Alves TM, et al. 2020. Fungi in glacial ice of Antarctica: diversity, distribution and bioprospecting of bioactive compounds. Extremophiles 24:367−76

doi: 10.1007/s00792-020-01161-5
[22]

White TJ, Bruns T, Lee S, Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR protocols: a guide to methods and applications, eds. Innis NA, Gelfand J, Sninsky J, White T. San Diego: Academic Press. pp. 315−22. doi: 10.1016/b978-0-12-372180-8.50042-1

[23]

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2012. MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30:2725−29

doi: 10.1093/molbev/mst197
[24]

Borrego S, Valdés O, Vivar I, Lavin P, Guiamet P, et al. 2012. Essential oils of plants as biocides against microorganisms isolated from Cuban and Argentine documentary heritage. International Scholarly Research Notices 2012:1826786

doi: 10.5402/2012/826786
[25]

López P, Sánchez C, Batlle R, Nerín C. 2005. Solid- and vapor- phase antimicrobial activities of six essential oils: susceptibility of selected foodborne bacterial and fungal strains. Journal of Agricultural and Food Chemistry 53:6939−46

doi: 10.1021/jf050709v
[26]

Boniek D, dos Santos AFB, de Resende Stoianoff MA. 2023. Detection of Cladosporium spinulosum on an engraving by Rembrandt and susceptibility profile to eco-friendly antifungal treatments. Journal of Basic Microbiology 63:1085−94

doi: 10.1002/jobm.202300317
[27]

Dubey MK, Zehra A, Aamir M, Yadav M, Samal S, et al. 2020. Isolation, identification, carbon utilization profile and control of Pythium graminicola, the causal agent of chilli damping-off. Journal of Phytopathology 168:88−102. doi:doi.org/10.1111/jph.12872

[28]

Gomes RR, Glienke C, Videira SR, Lombard L, Groenewald JZ, et al. 2013. Diaporthe: a genus of endophytic, saprobic and plant pathogenic fungi. Persoonia 31:1−41

doi: 10.3767/003158513X666844
[29]

Soković MD, Vukojević J, Marin PD, Brkić DD, Vajs V, et al. 2009. Chemical composition of essential oils of Thymus and Mentha species and their antifungal activities. Molecules 14:238−49

doi: 10.3390/molecules14010238
[30]

Borrego S. 2024. Airborne mycobiota in offices and other premises of the National Archive of The Republic of Cuba: its impact on the personnel health. Sisla Medical Journal of Microbiology 1(2):17−33

[31]

Palla F. 2024. Cultural heritage environments: monitoring strategy for preventive conservation of cultural assets and human health protection. Journal of basic and applied sciences 20:137−142

doi: 10.29169/1927-5129.2024.20.14
[32]

Ravikumar HR, Karigar CS. 2017. Biodegradation of pigment green-10 by Aspergillus flavus. International Journal of Sciences and Applied Research 4:78−84

[33]

Trovão J, Mesquita N, Paiva DS, Paiva de Carvalho H, Avelar L, et al. 2013. Can arthropods act as vectors of fungal dispersion in heritage collections? A case study on the archive of the University of Coimbra, Portugal. International Biodeterioration and Biodegradation 79:49−55

doi: 10.1016/j.ibiod.2012.10.015
[34]

Sanchis CM, Bosch-Roig P, Moliner BC, Miller AZ. 2023. Antifungal properties of oregano and clove volatile essential oils tested on biodeteriorated archaeological mummified skin. Journal of Cultural Heritage 61:40−47

doi: 10.1016/j.culher.2023.02.006
[35]

Mufunda F, Muzhinji N, Sigobodhla T, Marunda M, Chinheya CC, et al. 2017. Characterization of Pythium spp. associated with root rot of tobacco seedlings produced using the float tray system in Zimbabwe. Journal of Phytopathology 165:737−45

doi: 10.1111/jph.12613
[36]

Udayanga D, Liu X, Crous PW, McKenzie EHC, Chukeatirote E, et al. 2012. A multi-locus phylogenetic evaluation of Diaporthe (Phomopsis). Fungal Diversity 56:157−71

doi: 10.1007/s13225-012-0190-9
[37]

Thompson SM, Tan YP, Young AJ, Neate SM, Aitken EB, et al. 2011. Stem cankers on sunflower (Helianthus annuus) in Australia reveal a complex of pathogenic Diaporthe (Phomopsis) species. Persoonia 27:80−89

doi: 10.3767/003158511X617110
[38]

Rabbachin L, Nir I, Waldherr M, Vassallo Y, Piñar G, et al. 2024. Diversity of fungi associated with petroglyph sites in the Negev Desert, Israel, and their potential role in bioweathering. Frontiers in Fungal Biology 5:1400380

doi: 10.3389/ffunb.2024.1400380
[39]

Krupalini V, Teena YM, Kavyashree K and Janardhana GR. 2024. In-vitro evaluation of fungicides and essential oils against Diaporthe phaseolorum causing dieback of Melia dubia. Journal of Pharmacognosy and Phytochemistry 13(5):102−8

doi: 10.22271/phyto.2024.v13.i5b.15063
[40]

Paiva GF, Barbieri TPOM, Melo BS, Gonçalves FJT, Donegá MA. 2021. Efeito de óleos essenciais sobre o crescimento micelial de Pythium sp. agente causal de damping off em alface [Effect of essential oils on the mycelial growth of Pythium sp. causal agent of damping off in lettuce]. Brazilian Journal of Agriculture 96:439−45

doi: 10.37856/bja.v96i2.4276
[41]

Mani-López E, Cortés-Zavaleta O. & López-Malo A. 2021. A review of the methods used to determine the target site or the mechanism of action of essential oils and their components against fungi. SN Applied Sciences 3:44

doi: 10.1007/s42452-020-04102-1
[42]

Chaudhari AK, Singh VK, Dwivedy AK, Das S, Upadhyay N, et al. 2020. Chemically characterised Pimenta dioica (L.) Merr. essential oil as a novel plant-based antimicrobial against fungal and aflatoxin B1 contamination of stored maize and its possible mode of action. Natural Product Research 34:745−9

doi: 10.1080/14786419.2018.1499634
[43]

Lappa IK, Simini E, Nychas GJE, Panagou EZ. 2017. In vitro evaluation of essential oils against Aspergillus carbonarius isolates and their effects on ochratoxin a related gene expression in synthetic grape medium. Food Control 73:71−80

doi: 10.1016/j.foodcont.2016.08.016
[44]

Valentin N. 1993. Comparative analysis of insect control by nitrogen, argon and carbon dioxide in museum, archive and herbarium collections. International Biodeterioration and Biodegradation 32:263−78

doi: 10.1016/0964-8305(93)90029-2
[45]

Boniek D, Bonadio L, Damaceno QS, dos Santos AFB, de Resende Stoianoff MA. 2020. Occurrence of Aspergillus niger strains on a polychrome cotton painting and their elimination by anoxic treatment. Canadian Journal of Microbiology 66:586−92

doi: 10.1139/cjm-2020-0173