| [1] |
Zhang Y, Chen S, Li X, Tang Y. 2022. Design methodology of free-positioning nonoverlapping wireless charging for consumer electronics based on antiparallel windings. IEEE Transactions on Industrial Electronics 69:825−34 doi: 10.1109/TIE.2020.3048322 |
| [2] |
Chen W, Lu W, Iu HH-C, Fernando T. 2020. Compensation network optimal design based on evolutionary algorithm for inductive power transfer system. IEEE Transactions on Circuits and Systems I: Regular Papers 67:5664−74 doi: 10.1109/TCSI.2020.3012700 |
| [3] |
Tan T, Chen K, Lin Q, Jiang Y, Yuan L, et al. 2021. Impedance shaping control strategy for wireless power transfer system based on dynamic small-signal analysis. IEEE Transactions on Circuits and Systems I: Regular Papers 68:1354−65 doi: 10.1109/TCSI.2020.3040411 |
| [4] |
Lu J, Zhu G, Mi CC. 2022. Foreign object detection in wireless power transfer systems. IEEE Transactions on Industry Applications 58:1340−54 doi: 10.1109/TIA.2021.3057603 |
| [5] |
Ahn D, Kim SM, Kim SW, Moon JI, Cho IK. 2019. Wireless power transfer receiver with adjustable coil output voltage for multiple receivers application. IEEE Transactions on Industrial Electronics 66:4003−12 doi: 10.1109/TIE.2018.2833024 |
| [6] |
Cheng C, Li W, Zhou Z, Deng Z, Mi C. 2020. A load-independent wireless power transfer system with multiple constant voltage outputs. IEEE Transactions on Power Electronics 35:3328−31 doi: 10.1109/TPEL.2019.2940091 |
| [7] |
Cheng C, Lu F, Zhou Z, Li W, Deng Z, et al. 2020. A load-independent lcc-compensated wireless power transfer system for multiple loads with a compact coupler design. IEEE Transactions on Industrial Electronics 67:4507−15 doi: 10.1109/TIE.2019.2931260 |
| [8] |
Song J, Liu M, Ma C. 2020. Analysis and design of a high-efficiency 6.78-MHz wireless power transfer system with scalable number of receivers. IEEE Transactions on Industrial Electronics 67:8281−91 doi: 10.1109/TIE.2019.2950850 |
| [9] |
Lee SB, Kim M, Jang IG. 2021. Determination of the optimal resonant condition for multireceiver wireless power transfer systems considering the transfer efficiency and different rated powers with altered coupling effects. IEEE Journal of Emerging and Selected Topics in Power Electronics 9:2384−93 doi: 10.1109/JESTPE.2020.2983824 |
| [10] |
Liu F, Yang Y, Ding Z, Chen X, Kennel RM. 2018. A multifrequency superposition methodology to achieve high efficiency and targeted power distribution for a multiload MCR WPT system. IEEE Transactions on Power Electronics 33:9005−16 doi: 10.1109/TPEL.2017.2784566 |
| [11] |
Huang Y, Liu C, Xiao Y, Liu S. 2020. Separate power allocation and control method based on multiple power channels for wireless power transfer. IEEE Transactions on Power Electronics 35:9046−56 doi: 10.1109/TPEL.2020.2973465 |
| [12] |
Luo C, Qiu D, Gu W, Zhang B, Chen Y, et al. 2022. Multiload wireless power transfer system with constant output power and efficiency. IEEE Transactions on Industry Applications 58:1101−14 doi: 10.1109/TIA.2021.3103493 |
| [13] |
Kim JW, Hwang IJ, Yu JW, Yeo TD. 2021. Maximum efficiency point tracking scheme for loosely coupled multiple-receiver wireless power charging system with mutual inductance tracking. IEEE Transactions on Microwave Theory and Techniques 69:378−86 doi: 10.1109/TMTT.2020.3025069 |
| [14] |
Fu M, Yin H, Liu M, Wang Y, Ma C. 2018. A 6.78 MHz multiple-receiver wireless power transfer system with constant output voltage and optimum efficiency. IEEE Transactions on Power Electronics 33:5330−40 doi: 10.1109/TPEL.2017.2726349 |
| [15] |
Zhao P, Ji X, Wang H, Fu M. 2023. H5-bridge-based bowl-shape wireless charger for multiple loads. IEEE Transactions on Industrial Electronics 70:8853−61 doi: 10.1109/TIE.2022.3212386 |
| [16] |
Fu M, Yin H, Zhu X, Ma C. 2015. Analysis and tracking of optimal load in wireless power transfer systems. IEEE Transactions on Power Electronics 30:3952−63 doi: 10.1109/TPEL.2014.2347071 |
| [17] |
Zhong WX, Hui SYR. 2015. Maximum energy efficiency tracking for wireless power transfer systems. IEEE Transactions on Power Electronics 30:4025−34 doi: 10.1109/TPEL.2014.2351496 |
| [18] |
Diekhans T, De Doncker RW. 2015. A dual-side controlled inductive power transfer system optimized for large coupling factor variations and partial load. IEEE Transactions on Power Electronics 30:6320−28 doi: 10.1109/TPEL.2015.2393912 |
| [19] |
Berger A, Agostinelli M, Vesti S, Oliver JA, Cobos JA, et al. 2015. A wireless charging system applying phase-shift and amplitude control to maximize efficiency and extractable power. IEEE Transactions on Power Electronics 30:6338−48 doi: 10.1109/TPEL.2015.2410216 |
| [20] |
Dai X, Li X, Li Y, Hu AP. 2018. Maximum efficiency tracking for wireless power transfer systems with dynamic coupling coefficient estimation. IEEE Transactions on Power Electronics 33:5005−15 doi: 10.1109/TPEL.2017.2729083 |
| [21] |
Li H, Li J, Wang K, Chen W, Yang X. 2015. A maximum efficiency point tracking control scheme for wireless power transfer systems using magnetic resonant coupling. IEEE Transactions on Power Electronics 30:3998−4008 doi: 10.1109/TPEL.2014.2349534 |
| [22] |
Fu M, Zhang T, Ma C, Zhu X. 2015. Efficiency and optimal loads analysis for multiple-receiver wireless power transfer systems. IEEE Transactions on Microwave Theory and Techniques 63:801−12 doi: 10.1109/TMTT.2015.2398422 |