[1]

Wu S, Wang Y, Wang Z, Shrestha N, Liu J. 2022. Species divergence with gene flow and hybrid speciation on the Qinghai-Tibet Plateau. New Phytologist 234:392−404

doi: 10.1111/nph.17956
[2]

Mao K, Hao G, Liu J, Adams RP, Milne RI. 2010. Diversification and biogeography of Juniperus (Cupressaceae): variable diversification rates and multiple intercontinental dispersals. New Phytologist 188:254−72

doi: 10.1111/j.1469-8137.2010.03351.x
[3]

Tian X, Bai Z, Klemperer SL, Liang X, Liu Z, et al. 2021. Crustal-scale wedge tectonics at the narrow boundary between the Tibetan Plateau and Ordos block. Earth and Planetary Science Letters 554:116700

doi: 10.1016/j.jpgl.2020.116700
[4]

Li H, Qiu Y, Yao T, Han D, Gao Y, et al. 2021. Nutrients available in the soil regulate the changes of soil microbial community alongside degradation of alpine meadows in the northeast of the Qinghai-Tibet Plateau. Science of The Total Environment 792:148363

doi: 10.1016/j.scitotenv.2021.148363
[5]

Wang J, Zhang C, Luo P, Yang H, Luo C. 2023. Water yield response to plant community conversion caused by vegetation degradation and improvement in an alpine meadow on the northeastern Tibetan Plateau. Science of The Total Environment 856:159174

doi: 10.1016/j.scitotenv.2022.159174
[6]

Ren Y, Zhu Y, Baldan D, Fu M, Wang B, et al. 2021. Optimizing livestock carrying capacity for wild ungulate-livestock coexistence in a Qinghai-Tibet Plateau grassland. Scientific Reports 11:3635

doi: 10.1038/s41598-021-83207-y
[7]

Wang Y, Ren Z, Ma P, Wang Z, Niu D, et al. 2020. Effects of grassland degradation on ecological stoichiometry of soil ecosystems on the Qinghai-Tibet Plateau. Science of The Total Environment 722:137910

doi: 10.1016/j.scitotenv.2020.137910
[8]

Feng J, Wang T, Xie C. 2006. Eco-environmental degradation in the source region of the Yellow River, Northeast Qinghai-Xizang Plateau. Environmental Monitoring and Assessment 122:125−43

doi: 10.1007/s10661-005-9169-2
[9]

Wang J, Wu W, Zhou X, Li J. 2023. Carbon dioxide (CO2) partial pressure and emission from the river-reservoir system in the upper Yellow River, northwest China. Environmental Science and Pollution Research 30:19410−26

doi: 10.1007/s11356-022-23489-5
[10]

Xie W, Zhao X, Zhang J, Wang Y, Liu W. 2015. Assessment of genetic diversity of Siberian wild rye (Elymus sibiricus L.) germplasms with variation of seed shattering and implication for future genetic improvement. Biochemical Systematics and Ecology 58:211−18

doi: 10.1016/j.bse.2014.12.006
[11]

Ma X, Chen S, Zhang X, Bai S, Zhang C. 2012. Assessment of worldwide genetic diversity of Siberian wild rye (Elymus sibiricus L.) germplasm based on gliadin analysis. Molecules 17:4424−34

doi: 10.3390/molecules17044424
[12]

Zhang Z, Xie W, Zhang J, Zhao X, Zhao Y, et al. 2018. Phenotype- and SSR-based estimates of genetic variation between and within two important Elymus species in western and northern China. Genes 9:147

doi: 10.3390/genes9030147
[13]

Zhang Z, Zheng Y, Zhang J, Wang N, Wang Y, et al. 2022. High-altitude genetic selection and genome-wide association analysis of yield-related traits in Elymus sibiricus L. using SLAF sequencing. Frontiers in Plant Science 13:874409

doi: 10.3389/fpls.2022.874409
[14]

Xiong Y, Xiong Y, Shu X, Yu Q, Lei X, et al. 2022. Molecular phylogeography and intraspecific divergences in siberian wildrye (Elymus sibiricus L.) wild populations in China, inferred from chloroplast DNA sequence and cpSSR markers. Frontiers in Plant Science 13:862759

doi: 10.3389/fpls.2022.862759
[15]

Li G, Luo J, Chen S, Hanif Q, He D, et al. 2023. Maternal genetic diversity, differentiation and phylogeny of three white yak breeds/populations in China. Animal Biotechnology 34:728−33

doi: 10.1080/10495398.2021.1973018
[16]

Ding Z, Bai J, Xu D, Li F, Zhang Y, et al. 2020. Microbial community dynamics and natural fermentation profiles of ensiled alpine grass Elymus nutans prepared from different regions of the Qinghai-Tibetan Plateau. Frontiers in Microbiology 11:855

doi: 10.3389/fmicb.2020.00855
[17]

Ellegren H, Galtier N. 2016. Determinants of genetic diversity. Nature Reviews Genetics 17:422−33

doi: 10.1038/nrg.2016.58
[18]

Leimar O. 2005. The evolution of phenotypic polymorphism: randomized strategies versus evolutionary branching. The American Naturalist 165:669−81

doi: 10.1086/429566
[19]

Hayward AC, Tollenaere R, Dalton-Morgan J, Batley J. 2015. Molecular marker applications in plants. In Plant Genotyping, ed. Batley J. New York, NY: Humana Press. Vol 1245. pp. 13−27. doi: 10.1007/978-1-4939-1966-6_2

[20]

Ma X, Chen SY, Bai SQ, Zhang XQ, Li DX, et al. 2012. RAPD analysis of genetic diversity and population structure of Elymus sibiricus (Poaceae) native to the southeastern Qinghai-Tibet Plateau, China. Genetics and Molecular Research 11:2708−18

doi: 10.4238/2012.June.27.5
[21]

Zhang J, Xie W, Wang Y, Zhao X. 2015. Potential of Start Codon Targeted (SCoT) markers to estimate genetic diversity and relationships among Chinese Elymus sibiricus accessions. Molecules 20:5987−6001

doi: 10.3390/molecules20045987
[22]

Zhang Z, Xie W, Zhang J, Wang N, Zhao Y, et al. 2019. Construction of the first high-density genetic linkage map and identification of seed yield-related QTLs and candidate genes in Elymus sibiricus, an important forage grass in Qinghai-Tibet Plateau. BMC Genomics 20:861

doi: 10.1186/s12864-019-6254-4
[23]

Shavrukov Y, Kurishbayev A, Jatayev S, Shvidchenko V, Zotova L, et al. 2017. Early flowering as a drought escape mechanism in plants: how can it aid wheat production? Frontiers in Plant Science 8:1950

doi: 10.3389/fpls.2017.01950
[24]

Gaudinier A, Blackman BK. 2020. Evolutionary processes from the perspective of flowering time diversity. New Phytologist 225:1883−98

doi: 10.1111/nph.16205
[25]

Zheng Y, Zhang Z, Wan Y, Tian J, Xie W. 2020. Development of EST-SSR markers linked to flowering candidate genes in Elymus sibiricus L. based on RNA sequencing. Plants 9:1371

doi: 10.3390/plants9101371
[26]

Peakall R, Smouse PE. 2012. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537−39

doi: 10.1093/bioinformatics/bts460
[27]

Letunic I, Bork P. 2024. Interactive Tree of Life (iTOL) v6: recent updates to the phylogenetic tree display and annotation tool. Nucleic Acids Research 52:W78−W82

doi: 10.1093/nar/gkae268
[28]

Fisch GS. 2017. Whither the genotype-phenotype relationship? An historical and methodological appraisal. American Journal of Medical Genetics Part C, Seminars in Medical Genetics 175:343−53

doi: 10.1002/ajmg.c.31571
[29]

Lu Y, Chen J, Chen B, Liu Q, Zhang H, et al. 2022. High genetic diversity and low population differentiation of a medical plant Ficus hirta Vahl., uncovered by microsatellite loci: implications for conservation and breeding. BMC Plant Biology 22:334

doi: 10.1186/s12870-022-03734-2
[30]

Li J, Tian H, Ji W, Zhang C, Chen S. 2023. Inflorescence trait diversity and genotypic differentiation as influenced by the environment in Elymus nutans Griseb. from Qinghai-Tibet Plateau. Agronomy 13:1004

doi: 10.3390/agronomy13041004
[31]

Hamrick JL. 1987. Gene flow and distribution of genetic variation in plant populations. In Differentiation Patterns in Higher Plants, ed. Urbanska KM. London: Academic Press. pp. 53–68

[32]

Deng Y, Ren X, Li Y, Zang G, Zheng Y. 2021. Phenotypic diversity of Cynodon dactylon genetic resources in Henan Province. Chinese Journal of Grassland 43:18−26

doi: 10.16742/j.zgcdxb.20200038
[33]

Yan XB, Guo YX, Zhao C, Liu FY, Lu BR. 2009. Intra-population genetic diversity of two wheatgrass species along altitude gradients on the Qinghai-Tibetan Plateau: its implication for conservation and utilization. Conservation Genetics 10:359−67

doi: 10.1007/s10592-008-9596-z
[34]

Garris AJ, Tai TH, Coburn J, Kresovich S, McCouch S. 2005. Genetic structure and diversity in Oryza sativa L. Genetics 169:1631−38

doi: 10.1534/genetics.104.035642
[35]

Fink S, Hoppler-Wiedmer A, Zengerer V, Egger G, Schletterer M, et al. 2022. Gene flow in a pioneer plant metapopulation (Myricaria germanica) at the catchment scale in a fragmented alpine river system. Scientific Reports 12:8570

doi: 10.1038/s41598-022-12172-x
[36]

Yan XB, Guo YX, Liu FY, Zhao C, Liu QL, et al. 2010. Population structure affected by excess gene flow in self-pollinating Elymus nutans and E. burchan-buddae (Triticeae: Poaceae). Population Ecology 52:233−41

doi: 10.1007/s10144-009-0169-x
[37]

Ceccarelli S, Grando S. 2020. Evolutionary plant breeding as a response to the complexity of climate change. iScience 23:101815

doi: 10.1016/j.isci.2020.101815
[38]

Linder HP. 2020. The evolution of flowering phenology: an example from the wind-pollinated African Restionaceae. Annals of Botany 126:1141−53

doi: 10.1093/aob/mcaa129
[39]

Wolf AA, Zavaleta ES, Selmants PC. 2017. Flowering phenology shifts in response to biodiversity loss. Proceedings of the National Academy of Sciences of the United States of America 114:3463−68

doi: 10.1073/pnas.1608357114
[40]

Yan J, Bai S, Zhang C, You H, Li D, et al. 2010. Ecological characteristics and morphological variation of wild Elymus sibiricus L. germplasm from Qinghai-Tibetan Plateau in China. Chinese Journal of Grassland 32:49−57

[41]

Yu B, He X, Tang Y, Chen Z, Zhou L, et al. 2023. Photoperiod controls plant seed size in a CONSTANS-dependent manner. Nature Plants 9:343−54

doi: 10.1038/s41477-023-01350-y
[42]

Lacube S, Manceau L, Welcker C, Millet EJ, Gouesnard B, et al. 2020. Simulating the effect of flowering time on maize individual leaf area in contrasting environmental scenarios. Journal of Experimental Botany 71:5577−88

doi: 10.1093/jxb/eraa278
[43]

Bushman BS, Larson SR, Mott IW, Cliften PF, Wang RRC, et al. 2008. Development and annotation of perennial Triticeae ESTs and SSR markers. Genome 51:779−88

doi: 10.1139/G08-062
[44]

Tang C, Wang P, Zhu X, Qi K, Xie Z, et al. 2023. Acetylation of inorganic pyrophosphatase by S-RNase signaling induces pollen tube tip swelling by repressing pectin methylesterase. The Plant Cell 35:3544−65

doi: 10.1093/plcell/koad162
[45]

Zhao C, Xu W, Song X, Dai W, Dai L, et al. 2018. Early flowering and rapid grain filling determine early maturity and escape from harvesting in weedy rice. Pest Management Science 74:465−76

doi: 10.1002/ps.4730
[46]

Tesso T, Tirfessa A, Mohammed H. 2011. Association between morphological traits and yield components in the durra sorghums of Ethiopia. Hereditas 148:98−109

doi: 10.1111/j.1601-5223.2011.02229.x
[47]

Yan Y, Hou P, Duan F, Niu L, Dai T, et al. 2021. Improving photosynthesis to increase grain yield potential: an analysis of maize hybrids released in different years in China. Photosynthesis Research 150:295−311

doi: 10.1007/s11120-021-00847-x
[48]

Wu WD, Liu WH, Sun M, Zhou JQ, Liu W, et al. 2019. Genetic diversity and structure of Elymus tangutorum accessions from western China as unraveled by AFLP markers. Hereditas 156:8

doi: 10.1186/s41065-019-0082-z
[49]

Xiong Y, Liu W, Xiong Y, Yu Q, Ma X, et al. 2019. Revelation of genetic diversity and structure of wild Elymus excelsus (Poaceae: Triticeae) collection from western China by SSR markers. PeerJ 7:e8038

doi: 10.7717/peerj.8038
[50]

Chen Z, Guan Y, Han M, Guo Y, Zhang J, et al. 2022. Altitudinal patterns in adaptive evolution of genome size and inter-genome hybridization between three Elymus species from the Qinghai-Tibetan Plateau. Frontiers in Ecology and Evolution 10:923967

doi: 10.3389/fevo.2022.923967
[51]

Byars SG, Parsons Y, Hoffmann AA. 2009. Effect of altitude on the genetic structure of an Alpine grass, Poa hiemata. Annals of Botany 103:885−99

doi: 10.1093/aob/mcp018
[52]

Ortego J, Riordan EC, Gugger PF, Sork VL. 2012. Influence of environmental heterogeneity on genetic diversity and structure in an endemic southern Californian oak. Molecular Ecology 21:3210−23

doi: 10.1111/j.1365-294X.2012.05591.x
[53]

Wu Q, Dong S, Zhao Y, Yang L, Qi X, et al. 2023. Genetic diversity, population genetic structure and gene flow in the rare and endangered wild plant Cypripedium macranthos revealed by genotyping-by-sequencing. BMC Plant Biology 23:254

doi: 10.1186/s12870-023-04212-z
[54]

Yan J, Li X, Wang L, Li D, Ji C, et al. 2024. A high-continuity and annotated reference genome of allotetraploid Siberian wildrye (Elymus sibiricus L., Poaceae: Triticeae). bioRxiv 00:589894

doi: 10.1101/2024.04.17.589894v1