[1]

Faticov M, Abdelfattah A, Hambäck P, Roslin T, Tack AJM. 2023. Different spatial structure of plant-associated fungal communities above- and belowground. Ecology and Evolution 13:e10065

doi: 10.1002/ece3.10065
[2]

Dimkić I, Janakiev T, Petrović M, Degrassi G, Fira D. 2022. Plant-associated Bacillus and Pseudomonas antimicrobial activities in plant disease suppression via biological control mechanisms - a review. Physiological and Molecular Plant Pathology 117:101754

doi: 10.1016/j.pmpp.2021.101754
[3]

Shao Z, Gu S, Zhang X, Xue J, Yan T, et al. 2024. Siderophore interactions drive the ability of Pseudomonas spp. consortia to protect tomato against Ralstonia solanacearum. Horticulture Research 11:uhae186

doi: 10.1093/hr/uhae186
[4]

Vurukonda SSKP, Giovanardi D, Stefani E. 2018. Plant growth promoting and biocontrol activity of Streptomyces spp. as endophytes. International Journal of Molecular Sciences 19:952

doi: 10.3390/ijms19040952
[5]

Bargaz A, Lyamlouli K, Chtouki M, Zeroual Y, Dhiba D. 2018. Soil microbial resources for improving fertilizers efficiency in an integrated plant nutrient management system. Frontiers in Microbiology 9:1606

doi: 10.3389/fmicb.2018.01606
[6]

Becker A, Overlöper A, Schlüter JP, Reinkensmeier J, Robledo M, et al. 2014. Riboregulation in plant-associated α-proteobacteria. RNA Biology 11:550−62

doi: 10.4161/rna.29625
[7]

Khan AL, Waqas M, Kang SM, Al-Harrasi A, Hussain J, et al. 2014. Bacterial endophyte Sphingomonas sp. LK11 produces gibberellins and IAA and promotes tomato plant growth. Journal of Microbiology 52:689−95

doi: 10.1007/s12275-014-4002-7
[8]

Hernandez DJ, David AS, Menges ES, Searcy CA, Afkhami ME. 2021. Environmental stress destabilizes microbial networks. The ISME Journal 15:1722−34

doi: 10.1038/s41396-020-00882-x
[9]

Sura-de Jong M, Reynolds RJB, Richterova K, Musilova L, Staicu LC, et al. 2015. Selenium hyperaccumulators harbor a diverse endophytic bacterial community characterized by high selenium resistance and plant growth promoting properties. Frontiers in Plant Science 6:113

doi: 10.3389/fpls.2015.00113
[10]

Fu M, Chen Y, Liu YX, Chang X, Zhang L, et al. 2024. Genotype-associated core bacteria enhance host resistance against kiwifruit bacterial canker. Horticulture Research 11:uhae236

doi: 10.1093/hr/uhae236
[11]

Wang M, Xue J, Ma J, Feng X, Ying H, et al. 2020. Streptomyces lydicus M01 regulates soil microbial community and alleviates foliar disease caused by Alternaria alternata on cucumbers. Frontiers in Microbiology 11:942

doi: 10.3389/fmicb.2020.00942
[12]

Yuan M, Xin XF. 2021. Bacterial infection and hypersensitive response assays in Arabidopsis-pseudomonas syringae pathosystem. Bio-protocol 11:e4268

doi: 10.21769/BioProtoc.4268
[13]

Mathiazhagan M, Chidambara B, Hunashikatti LR, Ravishankar KV. 2021. Genomic approaches for improvement of tropical fruits: fruit quality, shelf life and nutrient content. Genes 12:1881

doi: 10.3390/genes12121881
[14]

Liu C, Xia R, Tang M, Chen X, Zhong B, et al. 2022. Improved ginseng production under continuous cropping through soil health reinforcement and rhizosphere microbial manipulation with biochar: a field study of Panax ginseng from Northeast China. Horticulture Research 9:uhac108

doi: 10.1093/hr/uhac108
[15]

Singh BK, Trivedi P, Egidi E, Macdonald CA, Delgado-Baquerizo M. 2020. Crop microbiome and sustainable agriculture. Nature Reviews Microbiology 18:601−02

doi: 10.1038/s41579-020-00446-y
[16]

Yim B, Baumann A, Grunewaldt-Stöcker G, Liu B, Beerhues L, et al. 2020. Rhizosphere microbial communities associated to rose replant disease: links to plant growth and root metabolites. Horticulture Research 7:144

doi: 10.1038/s41438-020-00365-2
[17]

Wei R, Ding Y, Gao F, Zhang L, Wang L, et al. 2022. Community succession of the grape epidermis microbes of cabernet sauvignon (Vitis vinifera L.) from different regions in China during fruit development. International Journal of Food Microbiology 362:109475

doi: 10.1016/j.ijfoodmicro.2021.109475
[18]

Anderson IC, Cairney JWG. 2004. Diversity and ecology of soil fungal communities: increased understanding through the application of molecular techniques. Environmental Microbiology 6:769−79

doi: 10.1111/j.1462-2920.2004.00675.x
[19]

Zhang Y, Zhao M, Tan J, Huang M, Chu X, et al. 2024. Telomere-to-telomere Citrullus super-pangenome provides direction for watermelon breeding. Nature Genetics 56:1750−61

doi: 10.1038/s41588-024-01823-6
[20]

Emms DM, Kelly S. 2019. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biology 20:238

doi: 10.1186/s13059-019-1832-y
[21]

Rozewicki J, Li S, Amada KM, Standley DM, Katoh K. 2019. MAFFT-DASH: integrated protein sequence and structural alignment. Nucleic Acids Research 47:W5−W10

doi: 10.1093/nar/gkz342
[22]

Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. 2009. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25:1972−73

doi: 10.1093/bioinformatics/btp348
[23]

Shen W, Le S, Li Y, Hu F. 2016. SeqKit: a cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLoS One 11:e0163962

doi: 10.1371/journal.pone.0163962
[24]

Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, et al. 2020. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution 37:1530−34

doi: 10.1093/molbev/msaa015
[25]

Ristic R, Boss PK, Wilkinson KL. 2015. Influence of fruit maturity at harvest on the intensity of smoke taint in wine. Molecules 20:8913−27

doi: 10.3390/molecules20058913
[26]

Uwadaira Y, Sekiyama Y, Ikehata A. 2018. An examination of the principle of non-destructive flesh firmness measurement of peach fruit by using VIS-NIR spectroscopy. Heliyon 4:e00531

doi: 10.1016/j.heliyon.2018.e00531
[27]

Alseekh S, Aharoni A, Brotman Y, Contrepois K, D'Auria J, et al. 2021. Mass spectrometry-based metabolomics: a guide for annotation, quantification and best reporting practices. Nature Methods 18:747−56

doi: 10.1038/s41592-021-01197-1
[28]

Dunn WB, Broadhurst D, Begley P, Zelena E, Francis-McIntyre S, et al. 2011. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nature Protocols 6:1060−83

doi: 10.1038/nprot.2011.335
[29]

Doppler M, Kluger B, Bueschl C, Schneider C, Krska R, et al. 2016. Stable isotope-assisted evaluation of different extraction solvents for untargeted metabolomics of plants. International Journal of Molecular Sciences 17:1017

doi: 10.3390/ijms17071017
[30]

Cai Y, Weng K, Guo Y, Peng J, Zhu ZJ. 2015. An integrated targeted metabolomic platform for high-throughput metabolite profiling and automated data processing. Metabolomics 11:1575−86

doi: 10.1007/s11306-015-0809-4
[31]

Wang J, Zhang T, Shen X, Liu J, Zhao D, et al. 2016. Serum metabolomics for early diagnosis of esophageal squamous cell carcinoma by UHPLC-QTOF/MS. Metabolomics 12:116

doi: 10.1007/s11306-016-1050-5
[32]

Aljanabi SM, Martinez I. 1997. Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Research 25:4692−93

doi: 10.1093/nar/25.22.4692
[33]

Johnston AD, Lu J, Korbie D, Trau M. 2022. Modelling clinical DNA fragmentation in the development of universal PCR-based assays for bisulfite-converted, formalin-fixed and cell-free DNA sample analysis. Scientific Reports 12:16051

doi: 10.1038/s41598-022-18196-7
[34]

Hess JF, Kohl T, Kotrová M, Rönsch K, Paprotka T, et al. 2020. Library preparation for next generation sequencing: a review of automation strategies. Biotechnology Advances 41:107537

doi: 10.1016/j.biotechadv.2020.107537
[35]

Nietsch R, Haas J, Lai A, Oehler D, Mester S, et al. 2016. The role of quality control in targeted next-generation sequencing library preparation. Genomics, Proteomics & Bioinformatics 14:200−06

doi: 10.1016/j.gpb.2016.04.007
[36]

Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nature Methods 9:357−59

doi: 10.1038/nmeth.1923
[37]

Chen S. 2023. Ultrafast one-pass FASTQ data preprocessing, quality control, and deduplication using fastp. iMeta 2:e107

doi: 10.1002/imt2.107
[38]

Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. 2017. metaSPAdes: a new versatile metagenomic assembler. Genome Research 27:824−34

doi: 10.1101/gr.213959.116
[39]

Hyatt D, Chen GL, LoCascio PF, Land ML, Larimer FW, et al. 2010. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11:119

doi: 10.1186/1471-2105-11-119
[40]

Huang Y, Niu B, Gao Y, Fu L, Li W. 2010. CD-HIT Suite: a web server for clustering and comparing biological sequences. Bioinformatics 26:680−82

doi: 10.1093/bioinformatics/btq003
[41]

Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. 2017. Salmon provides fast and bias-aware quantification of transcript expression. Nature Methods 14:417−19

doi: 10.1038/nmeth.4197
[42]

Franzosa EA, McIver LJ, Rahnavard G, Thompson LR, Schirmer M, et al. 2018. Species-level functional profiling of metagenomes and metatranscriptomes. Nature Methods 15:962−68

doi: 10.1038/s41592-018-0176-y
[43]

Blanco-Míguez A, Beghini F, Cumbo F, McIver LJ, Thompson KN, et al. 2023. Extending and improving metagenomic taxonomic profiling with uncharacterized species using MetaPhlAn 4. Nature Biotechnology 41:1633−44

doi: 10.1038/s41587-023-01688-w
[44]

Asnicar F, Weingart G, Tickle TL, Huttenhower C, Segata N. 2015. Compact graphical representation of phylogenetic data and metadata with GraPhlAn. PeerJ 3:e1029

doi: 10.7717/peerj.1029
[45]

Fellows RC, Chun SK, Larson N, Fortin BM, Mahieu AL, et al. 2024. Disruption of the intestinal clock drives dysbiosis and impaired barrier function in colorectal cancer. Science Advances 10:eado1458

doi: 10.1126/sciadv.ado1458
[46]

Cantalapiedra CP, Hernández-Plaza A, Letunic I, Bork P, Huerta-Cepas J. 2021. eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Molecular Biology and Evolution 38:5825−29

doi: 10.1093/molbev/msab293
[47]

Kristensen DM, Wolf YI, Koonin EV. 2016. ATGC database and ATGC-COGs: an updated resource for micro- and macro-evolutionary studies of prokaryotic genomes and protein family annotation. Nucleic Acids Research 45:D210−D218

doi: 10.1093/nar/gkw934
[48]

Zheng J, Ge Q, Yan Y, Zhang X, Huang L, et al. 2023. dbCAN3: automated carbohydrate-active enzyme and substrate annotation. Nucleic Acids Research 51:W115−W121

doi: 10.1093/nar/gkad328
[49]

Alcock BP, Raphenya AR, Lau TTY, Tsang KK, Bouchard M, et al. 2020. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Research 48:D517−D525

doi: 10.1093/nar/gkz935
[50]

Chomicki G, Schaefer H, Renner SS. 2020. Origin and domestication of Cucurbitaceae crops: insights from phylogenies, genomics and archaeology. New Phytologist 226:1240−55

doi: 10.1111/nph.16015
[51]

Su J, Wang Y, Bai M, Peng T, Li H, et al. 2023. Soil conditions and the plant microbiome boost the accumulation of monoterpenes in the fruit of Citrus reticulata 'Chachi'. Microbiome 11:61

doi: 10.1186/s40168-023-01504-2
[52]

Pérez-Jaramillo JE, Carrión VJ, de Hollander M, Raaijmakers JM. 2018. The wild side of plant microbiomes. Microbiome 6:143

doi: 10.1186/s40168-018-0519-z
[53]

Soldan R, Fusi M, Cardinale M, Homma F, Santos LG, et al. 2024. Consistent effects of independent domestication events on the plant microbiota. Current Biology 34:557−567.e4

doi: 10.1016/j.cub.2023.12.056
[54]

Hernández-Álvarez C, Peimbert M, Rodríguez-Martin P, Trejo-Aguilar D, Alcaraz LD. 2023. A study of microbial diversity in a biofertilizer consortium. PLoS One 18:e0286285

doi: 10.1371/journal.pone.0286285
[55]

Toor MD, Ur Rehman M, Abid J, Nath D, Ullah I, et al. 2024. Microbial ecosystems as guardians of food security and water resources in the era of climate change. Water, Air, & Soil Pollution 235:741

doi: 10.1007/s11270-024-07533-3
[56]

Schmidt JE, Bowles TM, Gaudin ACM. 2016. Using ancient traits to convert soil health into crop yield: impact of selection on maize root and rhizosphere function. Frontiers in Plant Science 7:373

doi: 10.3389/fpls.2016.00373
[57]

Yue H, Yue W, Jiao S, Kim H, Lee YH, et al. 2023. Plant domestication shapes rhizosphere microbiome assembly and metabolic functions. Microbiome 11:70

doi: 10.1186/s40168-023-01513-1
[58]

Soldan R, Fusi M, Cardinale M, Daffonchio D, Preston GM. 2021. The effect of plant domestication on host control of the microbiota. Communications Biology 4:936

doi: 10.1038/s42003-021-02467-6
[59]

Ding Y, Wei R, Wang L, Wang W, Wang H, et al. 2023. Exploring the ecological characteristics of natural microbial communities along the continuum from grape berries to winemaking. Food Research International 167:112718

doi: 10.1016/j.foodres.2023.112718
[60]

Botlagunta N, Babu S. 2024. Growth enhancement and changes in bacterial microbiome of cucumber plants exhibited by biopriming with some native bacteria. Saudi Journal of Biological Sciences 31:103997

doi: 10.1016/j.sjbs.2024.103997
[61]

Sun N, Zhang W, Liao S, Li H. 2023. Is foliar spectrum predictive of belowground bacterial diversity? A case study in a peach orchard. Frontiers in Microbiology 14:1129042

doi: 10.3389/fmicb.2023.1129042
[62]

Xu J, Zhang Y, Zhang P, Trivedi P, Riera N, et al. 2018. The structure and function of the global citrus rhizosphere microbiome. Nature Communications 9:4894

doi: 10.1038/s41467-018-07343-2
[63]

Serradilla MJ, Moraga C, Ruiz-Moyano S, Tejero P, de Guía Córdoba M, et al. 2021. Identification of the causal agent of aqueous spot disease of sweet cherries (Prunus avium L.) from the Jerte Valley (Cáceres, Spain). Foods 10:2281

doi: 10.3390/foods10102281
[64]

Duprey A, Taib N, Leonard S, Garin T, Flandrois JP, et al. 2019. The phytopathogenic nature of Dickeya aquatica 174/2 and the dynamic early evolution of Dickeya pathogenicity. Environmental Microbiology 21:2809−35

doi: 10.1111/1462-2920.14627
[65]

Warring SL, Sisson HM, Fineran PC, Rabiey M. 2024. Strategies for the biocontrol Pseudomonas infections pre-fruit harvest. Microbial Biotechnology 17:e70017

doi: 10.1111/1751-7915.70017
[66]

Serrão CP, Ortega JCG, Rodrigues PC, de Souza CRB. 2024. Bacillus species as tools for biocontrol of plant diseases: a meta-analysis of twenty-two years of research, 2000–2021. World Journal of Microbiology and Biotechnology 40:110

doi: 10.1007/s11274-024-03935-x
[67]

Deng C, Zeng N, Li C, Pang J, Zhang N, et al. 2024. Mechanisms of ROS-mediated interactions between Bacillus aryabhattai LAD and maize roots to promote plant growth. BMC Microbiology 24:327

doi: 10.1186/s12866-024-03479-y
[68]

Rahman M, Sabir AA, Mukta JA, Khan MMA, Mohi-Ud-Din M, et al. 2018. Plant probiotic bacteria Bacillus and Paraburkholderia improve growth, yield and content of antioxidants in strawberry fruit. Scientific Reports 8:2504

doi: 10.1038/s41598-018-20235-1
[69]

Ajuna HB, Lim HI, Moon JH, Won SJ, Choub V, et al. 2023. The prospect of hydrolytic enzymes from Bacillus species in the biological control of pests and diseases in forest and fruit tree production. International Journal of Molecular Sciences 24:16889

doi: 10.3390/ijms242316889
[70]

Bao Y, Dolfing J, Guo Z, Chen R, Wu M, et al. 2021. Important ecophysiological roles of non-dominant Actinobacteria in plant residue decomposition, especially in less fertile soils. Microbiome 9:84

doi: 10.1186/s40168-021-01032-x
[71]

Souza GS, do Nascimento VV, de Carvalho LP, de Melo EJT, Fernandes KV, et al. 2013. Activity of recombinant and natural defensins from Vigna unguiculata seeds against Leishmania amazonensis. Experimental Parasitology 135:116−25

doi: 10.1016/j.exppara.2013.06.005
[72]

Saminathan T, García M, Ghimire B, Lopez C, Bodunrin A, et al. 2018. Metagenomic and metatranscriptomic analyses of diverse watermelon cultivars reveal the role of fruit associated microbiome in carbohydrate metabolism and ripening of mature fruits. Frontiers in Plant Science 9:4

doi: 10.3389/fpls.2018.00004
[73]

Shokrzadeh M, Chabra A, Naghshvar F, Ahmadi A. 2013. The mitigating effect of Citrullus colocynthis (L.) fruit extract against genotoxicity induced by cyclophosphamide in mice bone marrow cells. The Scientific World Journal 2013:980480

doi: 10.1155/2013/980480
[74]

Wang YQ, Yang Y, Fei Z, Yuan H, Fish T, et al. 2013. Proteomic analysis of chromoplasts from six crop species reveals insights into chromoplast function and development. Journal of Experimental Botany 64:949−61

doi: 10.1093/jxb/ers375
[75]

Xiao X, Peng L. 2015. Molecular cloning, sequence characterization and expression pattern of Rab18 gene from watermelon (Citrullus lanatus). Biotechnology & Biotechnological Equipment 29:255−59

doi: 10.1080/13102818.2015.1008198
[76]

Choudhury FK, Rivero RM, Blumwald E, Mittler R. 2017. Reactive oxygen species, abiotic stress and stress combination. The Plant Journal 90:856−67

doi: 10.1111/tpj.13299
[77]

Zhu G, Wang S, Huang Z, Zhang S, Liao Q, et al. 2018. Rewiring of the fruit metabolome in tomato breeding. Cell 172:249−261.e12

doi: 10.1016/j.cell.2017.12.019
[78]

Wu TY, Gruissem W, Bhullar NK. 2019. Targeting intracellular transport combined with efficient uptake and storage significantly increases grain iron and zinc levels in rice. Plant Biotechnology Journal 17:9−20

doi: 10.1111/pbi.12943
[79]

Yang Z, Huang R, Fu X, Wang G, Qi W, et al. 2018. A post-ingestive amino acid sensor promotes food consumption in Drosophila. Cell Research 28:1013−25

doi: 10.1038/s41422-018-0084-9
[80]

Šola K, Gilchrist EJ, Ropartz D, Wang L, Feussner I, et al. 2019. RUBY, a putative galactose oxidase, influences pectin properties and promotes cell-to-cell adhesion in the seed coat epidermis of Arabidopsis. The Plant Cell 31:809−31

doi: 10.1105/tpc.18.00954
[81]

Chakraborty S, Fernandes VO, Dias FM, Prates JAM, Ferreira LMA, et al. 2015. Role of pectinolytic enzymes identified in Clostridium thermocellum cellulosome. PLoS One 10:e0116787

doi: 10.1371/journal.pone.0116787
[82]

Koga J, Yazawa M, Miyamoto K, Yumoto E, Kubota T, et al. 2021. Sphingadienine-1-phosphate levels are regulated by a novel glycoside hydrolase family 1 glucocerebrosidase widely distributed in seed plants. Journal of Biological Chemistry 297:101236

doi: 10.1016/j.jbc.2021.101236
[83]

Yan JY, Zhao WS, Chen Z, Xing QK, Zhang W, et al. 2018. Comparative genome and transcriptome analyses reveal adaptations to opportunistic infections in woody plant degrading pathogens of Botryosphaeriaceae. DNA Research 25:87−102

doi: 10.1093/dnares/dsx040
[84]

Louveau T, Leitao C, Green S, Hamiaux C, Van der Rest B, et al. 2011. Predicting the substrate specificity of a glycosyltransferase implicated in the production of phenolic volatiles in tomato fruit. The FEBS Journal 278:390−400

doi: 10.1111/j.1742-4658.2010.07962.x
[85]

Kroon PA, Williamson G, Fish NM, Archer DB, Belshaw NJ. 2000. A modular esterase from Penicillium funiculosum which releases ferulic acid from plant cell walls and binds crystalline cellulose contains a carbohydrate binding module. European Journal of Biochemistry 267:6740−52

doi: 10.1046/j.1432-1033.2000.01742.x
[86]

Prabhukarthikeyan SR, Keerthana U, Raguchander T. 2018. Antibiotic-producing Pseudomonas fluorescens mediates rhizome rot disease resistance and promotes plant growth in turmeric plants. Microbiological Research 210:65−73

doi: 10.1016/j.micres.2018.03.009
[87]

Taban BM, Aytac SA, Akkoc N, Akcelik M. 2013. Characterization of antibiotic resistance in Salmonella enterica isolates determined from ready-to-eat (RTE) salad vegetables. Brazilian Journal of Microbiology 44:385−91

doi: 10.1590/S1517-83822013005000047
[88]

Godziszewska J, Guzek D, Głąbski K, Wierzbicka A. 2016. Mobile antibiotic resistance – the spread of genes determining the resistance of bacteria through food products. Advances in Hygiene and Experimental Medicine 70:803−10