| [1] |
Hong S, Wang J, Wang Q, Zhang G, Zhao Y, et al. 2022. Decoding the formation of diverse petal colors of Lagerstroemia indica by integrating the data from transcriptome and metabolome. Frontiers in Plant Science 13:970023 doi: 10.3389/fpls.2022.970023 |
| [2] |
Zhang Z, Wang P, Li Y, Ma L, Li L, et al. 2014. Global transcriptome analysis and identification of the flowering regulatory genes expressed in leaves of Lagerstroemia indica. DNA and Cell Biology 33:680−88 doi: 10.1089/dna.2014.2469 |
| [3] |
Abbasi A, Malekpour M, Sobhanverdi S. 2021. The Arabidopsis expansin gene (AtEXPA18) is capable to ameliorate drought stress tolerance in transgenic tobacco plants. Molecular Biology Reports 48:5913−22 doi: 10.1007/s11033-021-06589-2 |
| [4] |
Azeez A, Sane AP, Tripathi SK, Bhatnagar D, Nath P. 2010. The gladiolus GgEXPA1 is a GA-responsive alpha-expansin gene expressed ubiquitously during expansion of all floral tissues and leaves but repressed during organ senescence. Postharvest Biology and Technology 58:48−56 doi: 10.1016/j.postharvbio.2010.05.006 |
| [5] |
Bordoloi K, Dihingia P, B Krishnatreya D, Agarwala N. 2021. Genome-wide identification, characterization and expression analysis of the expansin gene family under drought stress in tea (Camellia sinensis L.). Plant Science Today 8:32−44 doi: 10.14719/pst.2021.8.1.923 |
| [6] |
Boron AK, Van Loock B, Suslov D, Markakis MN, Verbelen JP, et al. 2015. Over-expression of AtEXLA2 alters etiolated arabidopsis hypocotyl growth. Annals of Botany 115:67−80 doi: 10.1093/aob/mcu221 |
| [7] |
Chen S, Ren H, Luo Y, Feng C, Li H. 2021. Genome-wide identification of wheat (Triticum aestivum L.) expansin genes and functional characterization of TaEXPB1A. Environmental and Experimental Botany 182:104307 doi: 10.1016/j.envexpbot.2020.104307 |
| [8] |
Lastdrager J, Hanson J, Smeekens S. 2014. Sugar signals and the control of plant growth and development. Journal of Experimental Botany 65:799−807 doi: 10.1093/jxb/ert474 |
| [9] |
Chen Y, Xie B, An X, Ma R, Zhao D, et al. 2022. Overexpression of the apple expansin-like gene MdEXLB1 accelerates the softening of fruit texture in tomato. Journal of Integrative Agriculture 21:3578−88 doi: 10.1016/j.jia.2022.08.030 |
| [10] |
López-Guerrero AG, Zenteno-Savín T, Rivera-Cabrera F, Izquierdo-Oviedo H, de Abril Alexandra Soriano Melgar L. 2021. Pectin-derived oligosaccharins effects on flower buds opening, pigmentation and antioxidant content of cut lisianthus flowers. Scientia Horticulturae 279:109909 doi: 10.1016/j.scienta.2021.109909 |
| [11] |
Dwivedi N, Deen B, Kumar A, Sharma MM, Jaiswal AK. 2018. Standardization of vase solutions for maximum buds opening and longer vase-life of gladiolus flower cv. nova lux. International Journal of Current Microbiology and Applied Sciences 7:3145−50 doi: 10.20546/ijcmas.2018.703.363 |
| [12] |
Ichimura K, Takada M, Ogawa K. 2022. Effects of treatments with nigerosylmaltooligosaccharide, glucose and sucrose on the vase life of cut snapdragon flowers. Scientia Horticulturae 291:110565 doi: 10.1016/j.scienta.2021.110565 |
| [13] |
Beauzamy L, Nakayama N, Boudaoud A. 2014. Flowers under pressure: ins and outs of turgor regulation in development. Annals of Botany 114:1517−33 doi: 10.1093/aob/mcu187 |
| [14] |
Lehman TA, Smertenko A, Sanguinet KA. 2017. Auxin, microtubules, and vesicle trafficking: conspirators behind the cell wall. Journal of Experimental Botany 68:3321−29 doi: 10.1093/jxb/erx205 |
| [15] |
Cosgrove DJ. 2000. Loosening of plant cell walls by expansins. Nature 407:321−26 doi: 10.1038/35030000 |
| [16] |
Hu T, Chen J, Lin X, He W, Liang H, et al. 2024. Comparison of the DNBSEQ platform and Illumina HiSeq 2000 for bacterial genome assembly. Scientific Reports 14:1292 doi: 10.1038/s41598-024-51725-0 |
| [17] |
Chen Y, Chen Y, Shi C, Huang Z, Zhang Y, et al. 2018. SOAPnuke: a MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data. GigaScience 7:gix120 doi: 10.1093/gigascience/gix120 |
| [18] |
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, et al. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology 29:644−52 doi: 10.1038/nbt.1883 |
| [19] |
Sahraeian SME, Mohiyuddin M, Sebra R, Tilgner H, Afshar PT, et al. 2017. Gaining comprehensive biological insight into the transcriptome by performing a broad-spectrum RNA-seq analysis. Nature Communications 8:59 doi: 10.1038/s41467-017-00050-4 |
| [20] |
Zheng T, Chen Z, Ju Y, Zhang H, Cai M, et al. 2018. Reference gene selection for qRT-PCR analysis of flower development in Lagerstroemia indica and L. speciosa. PLoS One 13:e0195004 doi: 10.1371/journal.pone.0195004 |
| [21] |
Campos-Rivero G, Osorio-Montalvo P, Sánchez-Borges R, Us-Camas R, Duarte-Aké F, et al. 2017. Plant hormone signaling in flowering: an epigenetic point of view. Journal of Plant Physiology 214:16−27 doi: 10.1016/j.jplph.2017.03.018 |
| [22] |
Cosgrove DJ. 2005. Growth of the plant cell wall. Nature Reviews Molecular Cell Biology 6:850−61 doi: 10.1038/nrm1746 |
| [23] |
Yang Y, Miao Y, Zhong S, Fang Q, Wang Y, et al. 2022. Genome-wide identification and expression analysis of XTH gene family during flower-opening stages in Osmanthus fragrans. Plants 11:1015 doi: 10.3390/plants11081015 |
| [24] |
Marowa P, Ding A, Kong Y. 2016. Expansins: roles in plant growth and potential applications in crop improvement. Plant Cell Reports 35:949−65 doi: 10.1007/s00299-016-1948-4 |
| [25] |
Jing W, Li Y, Zhang S, Zhou X, Gao J, et al. 2023. Aquaporin, beyond a transporter. Horticultural Plant Journal 9:29−34 doi: 10.1016/j.hpj.2022.04.004 |
| [26] |
Ferreira Ribas A, Volpi e Silva N, Dos Santos TB, Lima Abrantes F, Castilho Custódio C, et al. 2019. Regulation of α-expansins genes in Arabidopsis thaliana seeds during post-osmopriming germination. Physiology and Molecular Biology of Plants 25:511−22 doi: 10.1007/s12298-018-0620-6 |
| [27] |
Han Y, Wan H, Cheng T, Wang J, Yang W, et al. 2017. Comparative RNA-seq analysis of transcriptome dynamics during petal development in Rosa chinensis. Scientific Reports 7:43382 doi: 10.1038/srep43382 |
| [28] |
Harada T, Torii Y, Morita S, Masumura T, Satoh S. 2010. Differential expression of genes identified by suppression subtractive hybridization in petals of opening carnation flowers. Journal of Experimental Botany 61:2345−54 doi: 10.1093/jxb/erq064 |
| [29] |
Jin KM, Zhuo RY, Xu D, Wang YJ, Fan HJ, et al. 2020. Genome-wide identification of the expansin gene family and its potential association with drought stress in moso bamboo. International Journal of Molecular Sciences 21:9491 doi: 10.3390/ijms21249491 |
| [30] |
Gu C, Shang L, Zhang G, Wang Q, Ma Q, et al. 2022. Identification and expression analysis of NAC gene family in weeping trait of Lagerstroemia indica. Plants 11:2168 doi: 10.3390/plants11162168 |
| [31] |
Harada T, Torii Y, Morita S, Onodera R, Hara Y, et al. 2011. Cloning, characterization, and expression of xyloglucan endotransglucosylase/hydrolase and expansin genes associated with petal growth and development during carnation flower opening. Journal of Experimental Botany 62:815−23 doi: 10.1093/jxb/erq319 |
| [32] |
Gao W, Li D, Fan X, Sun Y, Han B, et al. 2020. Genome-wide identification, characterization, and expression analysis of the expansin gene family in watermelon (Citrullus lanatus). 3 Biotech 10:302 doi: 10.1007/s13205-020-02293-3 |
| [33] |
Ma J, Li Z, Wang B, Sui S, Li M. 2012. Cloning of an expansin gene from Chimonanthus praecox flowers and its expression in flowers treated with ethephon or 1-methylcyclopropene. HortScience horts 47:1472−77 doi: 10.21273/HORTSCI.47.10.1472 |
| [34] |
Kączkowski J. 2003. Structure, function and metabolism of plant cell wall. Acta Physiologiae Plantarum 25:287−305 doi: 10.1007/s11738-003-0010-7 |
| [35] |
Ke M, Gao Z, Chen J, Qiu Y, Zhang L, et al. 2018. Auxin controls circadian flower opening and closure in the waterlily. BMC Plant Biology 18:143 doi: 10.1186/s12870-018-1357-7 |
| [36] |
Li S, Zheng T, Zhuo X, Li Z, Li L, et al. 2020. Transcriptome profiles reveal that gibberellin-related genes regulate weeping traits in crape myrtle. Horticulture Research 7:54 doi: 10.1038/s41438-020-0279-3 |
| [37] |
Lü P, Kang M, Jiang X, Dai F, Gao J, et al. 2013. RhEXPA4, a rose expansin gene, modulates leaf growth and confers drought and salt tolerance to Arabidopsis. Planta 237:1547−59 doi: 10.1007/s00425-013-1867-3 |
| [38] |
Morita S, Sugiyama S, Tateishi A, Satoh S. 2017. Identification and characterization of plasma membrane intrinsic protein (PIP) aquaporin genes in petals of opening carnation flowers. The Horticulture Journal 86:78−86 doi: 10.2503/hortj.MI-127 |
| [39] |
Yamada K, Takahashi R, Fujitani C, Mishima K, Yoshida M, et al. 2009. Cell wall extensibility and effect of cell-wall-loosening proteins during rose flower opening. Journal of the Japanese Society for Horticultural Science 78:242−51 doi: 10.2503/jjshs1.78.242 |
| [40] |
Miao Y, Li W, Zhu H, Wang Y, Fang Q, et al. 2024. The roles of OfEXPA2 and OfEXPA4 on petal cell expansion during flower opening in Osmanthus fragrans. Scientia Horticulturae 338:113720 doi: 10.1016/j.scienta.2024.113720 |
| [41] |
Muroya M, Oshima H, Kobayashi S, Miura A, Miyamura Y, et al. 2021. Circadian clock in Arabidopsis thaliana determines flower opening time early in the morning and dominantly closes early in the afternoon. Plant and Cell Physiology 62:883−93 doi: 10.1093/pcp/pcab048 |
| [42] |
Zhou Y, Zheng T, Cai M, Feng L, Chi X, et al. 2023. Genome assembly and resequencing analyses provide new insights into the evolution, domestication and ornamental traits of crape myrtle. Horticulture Research 10:uhad146 doi: 10.1093/hr/uhad146 |