[1]

Kowalczyk W, Wrona D, Przybyłko S. 2022. Effect of nitrogen fertilization of apple orchard on soil mineral nitrogen content, yielding of the apple trees and nutritional status of leaves and fruits. Agriculture 12:2169

doi: 10.3390/agriculture12122169
[2]

Wen B, Li C, Fu X, Li D, Li L, et al. 2019. Effects of nitrate deficiency on nitrate assimilation and chlorophyll synthesis of detached apple leaves. Plant Physiology and Biochemistry 142:363−71

doi: 10.1016/j.plaphy.2019.07.007
[3]

Wen B, Zhao X, Gong X, Zhao W, Sun M, et al. 2023. The NAC transcription factor MdNAC4 positively regulates nitrogen deficiency-induced leaf senescence by enhancing ABA biosynthesis in apple. Molecular Horticulture 3:5

doi: 10.1186/s43897-023-00053-4
[4]

Zhao H, Sun S, Zhang L, Yang J, Wang Z, et al. 2020. Carbohydrate metabolism and transport in apple roots under nitrogen deficiency. Plant Physiology and Biochemistry 155:455−63

doi: 10.1016/j.plaphy.2020.07.037
[5]

Kühn BF, Bertelsen M, Sørensen L. 2011. Optimising quality-parameters of apple cv. 'Pigeon' by adjustment of nitrogen. Scientia Horticulturae 129:369−75

doi: 10.1016/j.scienta.2011.03.033
[6]

Ge S, Zhu Z, Peng L, Chen Q, Jiang Y. 2018. Soil nutrient status and leaf nutrient diagnosis in the main apple producing regions in China. Horticultural Plant Journal 4:89−93

doi: 10.1016/j.hpj.2018.03.009
[7]

Ren J, Yang X, Zhang N, Feng L, Ma C, et al. 2022. Melatonin alleviates aluminum-induced growth inhibition by modulating carbon and nitrogen metabolism, and reestablishing redox homeostasis in Zea mays L. Journal of Hazardous Materials 423:127159

doi: 10.1016/j.jhazmat.2021.127159
[8]

Vega A, O'brien JA, Gutiérrez RA. 2019. Nitrate and hormonal signaling crosstalk for plant growth and development. Current Opinion in Plant Biology 52:155−63

doi: 10.1016/j.pbi.2019.10.001
[9]

Zhang Y, Liu Z, Liu J, Lin S, Wang J, et al. 2017. GA-DELLA pathway is involved in regulation of nitrogen deficiency-induced anthocyanin accumulation. Plant Cell Reports 36:557−69

doi: 10.1007/s00299-017-2102-7
[10]

Colebrook EH, Thomas SG, Phillips AL, Hedden P. 2014. The role of gibberellin signalling in plant responses to abiotic stress. Journal of Experimental Biology 217:67−75

doi: 10.1242/jeb.089938
[11]

Bai L, Deng H, Zhang X, Yu X, Li Y. 2016. Gibberellin is involved in inhibition of cucumber growth and nitrogen uptake at suboptimal root-zone temperatures. PLoS One 11:e0156188

doi: 10.1371/journal.pone.0156188
[12]

Li S, Tian Y, Wu K, Ye Y, Yu J, et al. 2018. Modulating plant growth–metabolism coordination for sustainable agriculture. Nature 560:595−600

doi: 10.1038/s41586-018-0415-5
[13]

Sugiura D, Sawakami K, Kojima M, Sakakibara H, Terashima I, et al. 2015. Roles of gibberellins and cytokinins in regulation of morphological and physiological traits in Polygonum cuspidatum responding to light and nitrogen availabilities. Functional Plant Biology 42:397−409

doi: 10.1071/FP14212
[14]

Wang Y, Yao Q, Zhang Y, Zhang Y, Xing J, et al. 2020. The role of gibberellins in regulation of nitrogen uptake and physiological traits in maize responding to nitrogen availability. International Journal of Molecular Sciences 21:1824

doi: 10.3390/ijms21051824
[15]

Camut L, Gallova B, Jilli L, Sirlin-Josserand M, Carrera E, et al. 2021. Nitrate signaling promotes plant growth by upregulating gibberellin biosynthesis and destabilization of DELLA proteins. Current Biology 31:4971−4982.e4

doi: 10.1016/j.cub.2021.09.024
[16]

Gras DE, Vidal EA, Undurraga SF, Riveras E, Moreno S, et al. 2018. SMZ/SNZ and gibberellin signaling are required for nitrate-elicited delay of flowering time in Arabidopsis thaliana. Journal of Experimental Botany 69:619−31

doi: 10.1093/jxb/erx423
[17]

Wu K, Wang S, Song W, Zhang J, Wang Y, et al. 2020. Enhanced sustainable green revolution yield via nitrogen-responsive chromatin modulation in rice. Science 367:eaaz2046

doi: 10.1126/science.aaz2046
[18]

Feng ZQ, Li T, Wang X, Sun WJ, Zhang TT, et al. 2022. Identification and characterization of apple MdNLP7 transcription factor in the nitrate response. Plant Science 316:111158

doi: 10.1016/j.plantsci.2021.111158
[19]

Saiz-Fernández I, De Diego N, Brzobohatý B, Muñoz-Rueda A, Lacuesta M. 2017. The imbalance between C and N metabolism during high nitrate supply inhibits photosynthesis and overall growth in maize (Zea mays L.). Plant Physiology and Biochemistry 120:213−22

doi: 10.1016/j.plaphy.2017.10.006
[20]

Tazoe Y, Noguchi K, Terashima I. 2006. Effects of growth light and nitrogen nutrition on the organization of the photosynthetic apparatus in leaves of a C4 plant, Amaranthus cruentus. Plant, Cell & Environment 29:691−700

doi: 10.1111/j.1365-3040.2005.01453.x
[21]

Zhao D, Reddy KR, Kakani VG, Reddy VR. 2005. Nitrogen deficiency effects on plant growth, leaf photosynthesis, and hyperspectral reflectance properties of sorghum. European Journal of Agronomy 22:391−403

doi: 10.1016/j.eja.2004.06.005
[22]

Mu X, Chen Y. 2021. The physiological response of photosynthesis to nitrogen deficiency. Plant Physiology and Biochemistry 158:76−82

doi: 10.1016/j.plaphy.2020.11.019
[23]

Zhang L, Sun S, Liang Y, Li B, Ma S, et al. 2021. Nitrogen levels regulate sugar metabolism and transport in the shoot tips of crabapple plants. Frontiers in Plant Science 12:626149

doi: 10.3389/fpls.2021.626149
[24]

Figueroa CM, Feil R, Ishihara H, Watanabe M, Kölling K, et al. 2016. Trehalose 6–phosphate coordinates organic and amino acid metabolism with carbon availability. The Plant Journal 85:410−23

doi: 10.1111/tpj.13114
[25]

Lejay L, Tillard P, Lepetit M, Olive FD, Filleur S, et al. 1999. Molecular and functional regulation of two NO3 uptake systems by N- and C-status of Arabidopsis plants. The Plant Journal 18:509−19

doi: 10.1046/j.1365-313X.1999.00480.x
[26]

Wang F, Sha J, Chen Q, Xu X, Zhu Z, et al. 2019. Exogenous abscisic acid regulates distribution of 13C and 15N and anthocyanin synthesis in 'Red Fuji' apple fruit under high nitrogen supply. Frontiers in Plant Science 10:1738

doi: 10.3389/fpls.2019.01738
[27]

Li Z, Chen Q, Xin Y, Mei Z, Gao A, et al. 2021. Analyses of the photosynthetic characteristics, chloroplast ultrastructure, and transcriptome of apple (Malus domestica) grown under red and blue lights. BMC Plant Biology 21:483

doi: 10.1186/s12870-021-03262-5
[28]

Róth E, Berna A, Beullens K, Yarramraju S, Lammertyn J, et al. 2007. Postharvest quality of integrated and organically produced apple fruit. Postharvest Biology and Technology 45:11−19

doi: 10.1016/j.postharvbio.2007.01.006
[29]

Vu JCV, Niedz RP, Yelenosky G. 1995. Activities of sucrose metabolism enzymes in glycerol-grown suspension cultures of sweet orange (Citrus sinensis L. Osbeck). Environmental and Experimental Botany 35:455−59, 461−63

doi: 10.1016/0098-8472(95)00031-3
[30]

Dancer J, Hatzfeld WD, Stitt M. 1990. Cytosolic cycles regulate the turnover of sucrose in heterotrophic cell-suspension cultures of Chenopodium rubrum L. Planta 182:223−31

doi: 10.1007/BF00197115
[31]

Chen Z, Cao X, Niu J. 2021. Effects of melatonin on morphological characteristics, mineral nutrition, nitrogen metabolism, and energy status in alfalfa under high-nitrate stress. Frontiers in Plant Science 12:694179

doi: 10.3389/fpls.2021.694179
[32]

Cataldo DA, Maroon M, Schrader LE, Youngs VL. 1975. Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Communications in Soil Science and Plant Analysis 6:71−80

doi: 10.1080/00103627509366547
[33]

Solórzano L. 1969. Determination of ammonia in natural waters by the phenolhypochlorite method. Limnology and Oceanography 14:799−801

doi: 10.4319/lo.1969.14.5.0799
[34]

Zhang R, Sun Y, Liu Z, Jin W, Sun Y. 2017. Effects of melatonin on seedling growth, mineral nutrition, and nitrogen metabolism in cucumber under nitrate stress. Journal of Pineal Research 62:e12403

doi: 10.1111/jpi.12403
[35]

Ding Y, Luo W, Xu G. 2006. Characterisation of magnesium nutrition and interaction of magnesium and potassium in rice. Annals of Applied Biology 149:111−23

doi: 10.1111/j.1744-7348.2006.00080.x
[36]

Oaks A, Stulen I, Jones K, Winspear MJ, Misra S, et al. 1980. Enzymes of nitrogen assimilation in maize roots. Planta 148:477−84

doi: 10.1007/BF02395318
[37]

Singh RP, Srivastava HS. 1986. Increase in glutamate synthase (NADH) activity in maize seedlings in response to nitrate and ammonium nitrogen. Physiologia Plantarum 66:413−16

doi: 10.1111/j.1399-3054.1986.tb05944.x
[38]

Sprangers K, Thys S, Van Dusschoten D, Beemster GTS. 2020. Gibberellin enhances the anisotropy of cell expansion in the growth zone of the maize leaf. Frontiers in Plant Science 11:1163

doi: 10.3389/fpls.2020.01163
[39]

Mu X, Chen Q, Wu X, Chen F, Yuan L, et al. 2018. Gibberellins synthesis is involved in the reduction of cell flux and elemental growth rate in maize leaf under low nitrogen supply. Environmental and Experimental Botany 150:198−208

doi: 10.1016/j.envexpbot.2018.03.012
[40]

Liu X, Yin C, Xiang L, Jiang W, Xu S, et al. 2020. Transcription strategies related to photosynthesis and nitrogen metabolism of wheat in response to nitrogen deficiency. BMC Plant Biology 20:448

doi: 10.1186/s12870-020-02662-3
[41]

Tholen D, Boom C, Zhu XG. 2012. Opinion: prospects for improving photosynthesis by altering leaf anatomy. Plant Science 197:92−101

doi: 10.1016/j.plantsci.2012.09.005
[42]

Xu X, Liu G, Liu J, Lyu M, Wang F, et al. 2024. Potassium alleviated high nitrogen-induced apple growth inhibition by regulating photosynthetic nitrogen allocation and enhancing nitrogen utilization capacity. Horticultural Plant Journal 10:1−14

doi: 10.1016/j.hpj.2023.04.003
[43]

Müller M, Munné-Bosch S. 2021. Hormonal impact on photosynthesis and photoprotection in plants. Plant Physiology 185:1500−22

doi: 10.1093/plphys/kiaa119
[44]

Zhou B, Peng D, Lin J, Huang X, Peng W, et al. 2011. Heterologous expression of a gibberellin 2-Oxidase gene from Arabidopsis thaliana enhanced the photosynthesis capacity in Brassica napus L. Journal of Plant Biology 54:23−32

doi: 10.1007/s12374-010-9139-2
[45]

Hu D, Li X, Yang Z, Liu S, Hao D, et al. 2022. Downregulation of a gibberellin 3β-hydroxylase enhances photosynthesis and increases seed yield in soybean. New Phytologist 235:502−17

doi: 10.1111/nph.18153
[46]

Li M, Li P, Ma F, Dandekar AM, Cheng L. 2018. Sugar metabolism and accumulation in the fruit of transgenic apple trees with decreased sorbitol synthesis. Horticulture Research 5:60

doi: 10.1038/s41438-018-0064-8
[47]

Li M, Feng F, Cheng L. 2012. Expression patterns of genes involved in sugar metabolism and accumulation during apple fruit development. PLoS One 7:e33055

doi: 10.1371/journal.pone.0033055
[48]

Coleman HD, Yan J, Mansfield SD. 2009. Sucrose synthase affects carbon partitioning to increase cellulose production and altered cell wall ultrastructure. Proceedings of the National Academy of Sciences of the United States of America 106:13118−23

doi: 10.1073/pnas.0900188106
[49]

Yang J, Zhu L, Cui W, Zhang C, Li D, et al. 2018. Increased activity of MdFRK2, a high-affinity fructokinase, leads to upregulation of sorbitol metabolism and downregulation of sucrose metabolism in apple leaves. Horticulture Research 5:71

doi: 10.1038/s41438-018-0099-x
[50]

Liu Q, Rasmussen S, Johnson LJ, Xue H, Parsons AJ, et al. 2020. Molecular mechanisms regulating carbohydrate metabolism during Lolium perenne regrowth vary in response to nitrogen and gibberellin supply. Journal of Plant Growth Regulation 39:1332−45

doi: 10.1007/s00344-020-10070-y
[51]

Qin C, Li B, Wu W, Su Y, Niu G, et al. 2019. Exogenous application of indole acetic acid (IAA) and giberrelic acid (GA3) induces changes in carbon and nitrogen metabolisms that affect tobacco (Nicotiana tabacum L.) production. Pakistan Journal of Botany 51:149−55

doi: 10.30848/pjb2019-1(27)
[52]

Wang X, Zhou Y, Chai X, Foster TM, Deng CH, et al. 2024. miR164-MhNAC1 regulates apple root nitrogen uptake under low nitrogen stress. New Phytologist 242:1218−37

doi: 10.1111/nph.19663
[53]

Chai X, Wang X, Pi Y, Wu T, Zhang X, et al. 2022. Nitrate transporter MdNRT2.4 interacts with rhizosphere bacteria to enhance nitrate uptake in apple rootstocks. Journal of Experimental Botany 73:6490−504

doi: 10.1093/jxb/erac301
[54]

Wang Q, Liu C, Dong Q, Huang D, Li C, et al. 2018. Genome-wide identification and analysis of apple NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family (NPF) genes reveals MdNPF6.5 confers high capacity for nitrogen uptake under low-nitrogen conditions. International Journal of Molecular Sciences 19:2761

doi: 10.3390/ijms19092761
[55]

Krapp A, David LC, Chardin C, Girin T, Marmagne A, et al. 2014. Nitrate transport and signalling in Arabidopsis. Journal of Experimental Botany 65:789−98

doi: 10.1093/jxb/eru001
[56]

Liu YJ, Gao N, Ma QJ, Zhang JC, Wang X, et al. 2021. The MdABI5 transcription factor interacts with the MdNRT1.5/MdNPF7.3 promoter to fine-tune nitrate transport from roots to shoots in apple. Horticulture Research 8:236

doi: 10.1038/s41438-021-00667-z
[57]

Chen CZ, Lv XF, Li JY, Yi HY, Gong JM. 2012. Arabidopsis NRT1.5 is another essential component in the regulation of nitrate reallocation and stress tolerance. Plant Physiology 159:1582−90

doi: 10.1104/pp.112.199257
[58]

Liu RX, Li HL, Rui L, Liu GD, Wang T, et al. 2023. An apple NITRATE REDUCTASE 2 gene positively regulates nitrogen utilization and abiotic stress tolerance in Arabidopsis and apple callus. Plant Physiology and Biochemistry 196:23−32

doi: 10.1016/j.plaphy.2023.01.026
[59]

Zhou K, Hu L, Yue H, Zhang Z, Zhang J, et al. 2022. MdUGT88F1-mediated phloridzin biosynthesis coordinates carbon and nitrogen accumulation in apple. Journal of Experimental Botany 73:886−902

doi: 10.1093/jxb/erab410
[60]

Krouk G, Mirowski P, Lecun Y, Shasha DE, Coruzzi GM. 2010. Predictive network modeling of the high-resolution dynamic plant transcriptome in response to nitrate. Genome Biology 11:R123

doi: 10.1186/gb-2010-11-12-r123
[61]

Kaiser WM, Huber SC. 2001. Post‐translational regulation of nitrate reductase: mechanism, physiological relevance and environmental triggers. Journal of Experimental Botany 52:1981−89

doi: 10.1093/jexbot/52.363.1981
[62]

Islam S, Islam R, Kandwal P, Khanam S, Proshad R, et al. 2022. Nitrate transport and assimilation in plants: a potential review. Archives of Agronomy and Soil Science 68:133−50

doi: 10.1080/03650340.2020.1826042
[63]

Sun H, Cui H, Zhang J, Kang J, Wang Z, et al. 2021. Gibberellins inhibit flavonoid biosynthesis and promote nitrogen metabolism in Medicago truncatula. International Journal of Molecular Sciences 22:9291

doi: 10.3390/ijms22179291
[64]

Watanabe D, Takahashi I, Jaroensanti-Tanaka N, Miyazaki S, Jiang K, et al. 2021. The apple gene responsible for columnar tree shape reduces the abundance of biologically active gibberellin. The Plant Journal 105:1026−34

doi: 10.1111/tpj.15084
[65]

Zhang S, Zhang D, Fan S, Du L, Shen Y, et al. 2016. Effect of exogenous GA3 and its inhibitor paclobutrazol on floral formation, endogenous hormones, and flowering-associated genes in 'Fuji' apple (Malus domestica Borkh.). Plant Physiology and Biochemistry 107:178−86

doi: 10.1016/j.plaphy.2016.06.005
[66]

Zhu Y, Zheng P, Varanasi V, Shin S, Main D, et al. 2012. Multiple plant hormones and cell wall metabolism regulate apple fruit maturation patterns and texture attributes. Tree Genetics & Genomes 8:1389−406

doi: 10.1007/s11295-012-0526-3
[67]

Andrews M. 1986. The partitioning of nitrate assimilation between root and shoot of higher plants. Plant, Cell & Environment 9:511−19

doi: 10.1111/1365-3040.ep11616228
[68]

Tegeder M, Masclaux-Daubresse C. 2018. Source and sink mechanisms of nitrogen transport and use. New Phytologist 217:35−53

doi: 10.1111/nph.14876
[69]

Xu X, Wang F, Xing Y, Liu J, Lv M, et al. 2022. Appropriate and constant potassium supply promotes the growth of M9T337 apple rootstocks by regulating endogenous hormones and carbon and nitrogen metabolism. Frontiers in Plant Science 13:827478

doi: 10.3389/fpls.2022.827478