[1]

Samson R, Mani S, Boddey R, Sokhansanj S, Quesada D, et al. 2005. The potential of C4 Perennial grasses for developing a global BIOHEAT industry. Critical Reviews in Plant Sciences 24:461−95

doi: 10.1080/07352680500316508
[2]

Negawo AT, Teshome A, Kumar A, Hanson J, Jones C. 2017. Opportunities for Napier grass (Pennisetum purpureum) improvement using molecular genetics. Agronomy 7:28

doi: 10.3390/agronomy7020028
[3]

Ferreira SD, Manera C, Silvestre WP, Pauletti GF, Altafini CR, et al. 2019. Use of biochar produced from elephant grass by pyrolysis in a screw reactor as a soil amendment. Waste and Biomass Valorization 10:3089−100

doi: 10.1007/s12649-018-0347-1
[4]

Schank SC, Chynoweth DP, Turick CE, Mendoza PE. 1993. Napiergrass genotypes and plant parts for biomass energy. Biomass and Bioenergy 4:1−7

doi: 10.1016/0961-9534(93)90021-U
[5]

Jewell WJ, Cummings RJ, Richards BK. 1993. Methane fermentation of energy crops: maximum conversion kinetics and in situ biogas purification. Biomass and Bioenerg 5:261−278

doi: 10.1016/0961-9534(93)90076-G
[6]

Strezov V, Evans TJ, Hayman C. 2008. Thermal conversion of elephant grass (Pennisetum Purpureum Schum.) to bio-gas, bio-oil and charcoal. Bioresour Technology 99:8394−99

doi: 10.1016/j.biortech.2008.02.039
[7]

Santos CC, de Souza W, Anna CS, Brienzo M. 2018. Elephant grass leaves have lower recalcitrance to acid pretreatment than stems, with higher potential for ethanol production. Industrial Crops and Products 111:193−200

doi: 10.1016/j.indcrop.2017.10.013
[8]

Nguyen BT, Le LB, Pham LP, Nguyen HT, Tran TD, et al. 2021. The effects of biochar on the biomass yield of elephant grass (Pennisetum Purpureum Schumach) and properties of acidic soils. Industrial Crops and Products 161:113224

doi: 10.1016/j.indcrop.2020.113224
[9]

Andrade AC, da Fonseca DM, dos Santos Lopes R, do Nascimento Júnior D, Cecon PR, et al. 2005. Growth analysis of 'Napier' elephant grass fertilized and irrigated. Revista Ciência Agroambiental 29:415−23

[10]

Somerville C, Youngs H, Taylor C, Davis SC, Long SP. 2010. Feedstocks for lignocellulosic biofuels. Science 329:790−92

doi: 10.1126/science.1189268
[11]

Johannes LP, Minh TTN, Xuan TD. 2024. Elephant grass (Pennisetum purpureum): a bioenergy resource overview. Biomass 4:625−46

doi: 10.3390/biomass4030034
[12]

Mao C, Zhang J, Zhang Y, Wang B, Li W, et al. 2024. Genome-wide analysis of the WRKY gene family and their response to low-temperature stress in elephant grass. BMC Genomics 25:947

doi: 10.1186/s12864-024-10844-8
[13]

Liang X, Erickson JE, Sollenberger LE, Rowland DL, Silveira ML, et al. 2018. Growth and transpiration responses of elephantgrass and energycane to soil drying. Crop Science 58:354−63

doi: 10.2135/cropsci2017.01.0019
[14]

Jin Y, Luo J, Yang Y, Jia J, Sun M, et al. 2023. The evolution and expansion of RWP-RK gene family improve the heat adaptability of elephant grass (Pennisetum purpureum Schum.). BMC Genomics 24:510

doi: 10.1186/s12864-023-09550-8
[15]

Alshoaibi A. 2021. Interactive effects of salinity and chilling stress on the growth of the two forage species elephant grass and maize. Egyptian Journal of Botany 61:579−90

doi: 10.21608/ejbo.2021.66104.1641
[16]

Ding Y, Shi Y, Yang S. 2024. Regulatory networks underlying plant responses and adaptation to cold stress. Annual Review of Genetics 58:43−65

doi: 10.1146/annurev-genet-111523-102226
[17]

Jones MB, Finnan J, Hodkinson TR. 2015. Morphological and physiological traits for higher biomass production in perennial rhizomatous grasses grown on marginal land. Global Change Biology Bioenergy 7:375−85

doi: 10.1111/gcbb.12203
[18]

Lv X, Li H, Chen X, Xiang X, Guo Z, et al. 2018. The role of calcium-dependent protein kinase in hydrogen peroxide, nitric oxide and ABA-dependent cold acclimation. Journal of Experimental Botany 69:4127−39

doi: 10.1093/jxb/ery212
[19]

Ranty B, Aldon D, Cotelle V, Galaud JP, Thuleau P, et al. 2016. Calcium sensors as key hubs in plant responses to biotic and abiotic stresses. Frontiers in Plant Science 7:327

doi: 10.3389/fpls.2016.00327
[20]

Morrison DK. 2012. MAP kinase pathways. Cold Spring Harbor Perspective in Biology 4:a011254

doi: 10.1101/cshperspect.a011254
[21]

Di T, Wu Y, Feng X, He M, Lei L, et al. 2024. CIPK11 phosphorylates GSTU23 to promote cold tolerance in Camellia sinensis. Plant, Cell & Environment 47:4786−99

doi: 10.1111/pce.15070
[22]

Chen Y, Chen L, Sun X, Kou S, Liu T, et al. 2022. The mitogen-activated protein kinase kinase MKK2 positively regulates constitutive cold resistance in the potato. Environmental and Experimental Botany 194:104702

doi: 10.1016/j.envexpbot.2021.104702
[23]

Baron KN, Schroeder DF, Stasolla C. 2012. Transcriptional response of abscisic acid (ABA) metabolism and transport to cold and heat stress applied at the reproductive stage of development in Arabidopsis thaliana. Plant Science 188−189:48−59

doi: 10.1016/j.plantsci.2012.03.001
[24]

Maruyama K, Urano K, Yoshiwara K, Morishita Y, Sakurai N, et al. 2014. Integrated analysis of the effects of cold and dehydration on rice metabolites, phytohormones, and gene transcripts. Plant Physiology 164:1759−71

doi: 10.1104/pp.113.231720
[25]

Li M, Wang C, Shi J, Zhang Y, Liu T, et al. 2021. Abscisic acid and putrescine synergistically regulate the cold tolerance of melon seedlings. Plant Physiology and Biochemistry 166:1054−64

doi: 10.1016/j.plaphy.2021.07.011
[26]

Wu B, Sun M, Zhang H, Yang D, Lin C, et al. 2021. Transcriptome analysis revealed the regulation of gibberellin and the establishment of photosynthetic system promote rapid seed germination and early growth of seedling in pearl millet. Biotechnology for Biofuels 14:94

doi: 10.1186/s13068-021-01946-6
[27]

Sun M, Lin C, Zhang A, Wang X, Yan H, et al. 2021. Transcriptome sequencing revealed the molecular mechanism of response of pearl millet root to heat stress. Journal of Agronomy and Crop Science 207:768−73

doi: 10.1111/jac.12496
[28]

Liu X, Su L, Li L, Zhang Z, Li X, et al. 2023. Transcriptome profiling reveals characteristics of hairy root and the role of AhGLK1 in response to drought stress and post-drought recovery in peanut. BMC Genomics 24:119

doi: 10.1186/s12864-023-09219-2
[29]

Sinha R, Induri SP, Peláez-Vico MÁ, Tukuli A, Shostak B, et al. 2023. The transcriptome of soybean reproductive tissues subjected to water deficit, heat stress, and a combination of water deficit and heat stress. The Plant Journal 116:1064−80

doi: 10.1111/tpj.16222
[30]

Yan H, Sun M, Zhang Z, Jin Y, Zhang A, et al. 2023. Pangenomic analysis identifies structural variation associated with heat tolerance in pearl millet. National Genetics 55:507−18

doi: 10.1038/s41588-023-01302-4
[31]

Chen L, Li C, Zhang J, Li Z, Zeng Q, et al. 2024. Physiological and transcriptome analyses of Chinese cabbage in response to drought stress. Journal of Integrative Agriculture 23:2255−69

doi: 10.1016/j.jia.2024.03.067
[32]

Yang C, Li X, Zhang Y, Jin H. 2023. Transcriptome analysis of Populus × canadensis 'Zhongliao1' in response to low temperature stress. BMC Genomics 24:77

doi: 10.1186/s12864-023-09187-7
[33]

Zhou H, He Y, Zhu Y, Li M, Song S, et al. 2020. Comparative transcriptome profiling reveals cold stress responsiveness in two contrasting Chinese jujube cultivars. BMC Plant Biology 20:240

doi: 10.1186/s12870-020-02450-z
[34]

Zhao Y, Zhou M, Xu K, Li J, Li S, et al. 2019. Integrated transcriptomics and metabolomics analyses provide insights into cold stress response in wheat. The Crop Journal 7:857−66

doi: 10.1016/j.cj.2019.09.002
[35]

Guo Q, Li X, Niu L, Jameson PE, Zhou W. 2021. Transcription-associated metabolomic adjustments in maize occur during combined drought and cold stress. Plant Physiology 186:677−95

doi: 10.1093/plphys/kiab050
[36]

Chen S, Zhou Y, Chen Y, Gu J. 2018. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34:i884−i890

doi: 10.1093/bioinformatics/bty560
[37]

Yan Q, Wu F, Xu P, Sun Z, Li J, et al. 2021. The elephant grass (Cenchrus purpureus) genome provides insights into anthocyanidin accumulation and fast growth. Molecular Ecology Resources 21:526−42

doi: 10.1111/1755-0998.13271
[38]

Bray NL, Pimentel H, Melsted P, Pachter L. 2016. Near-optimal probabilistic RNA-seq quantification. Nature Biotechnology 34:525−27

doi: 10.1038/nbt.3519
[39]

Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A, et al. 2016. A survey of best practices for RNA-seq data analysis. Genome Biology 17:13

doi: 10.1186/s13059-016-0881-8
[40]

Pimentel H, Bray NL, Puente S, Melsted P, Pachter L. 2017. Differential analysis of RNA-seq incorporating quantification uncertainty. Natural Methods 14:687−90

doi: 10.1038/nmeth.4324
[41]

Sun M, Yan H, Zhang A, Jin Y, Lin C, et al. 2023. Milletdb: a multi-omics database to accelerate the research of functional genomics and molecular breeding of millets. Plant Biotechnology Journal 21:2348−57

doi: 10.1111/pbi.14136
[42]

Hassan MJ, Najeeb A, Liu S, Ali U, Chandio WA, et al. 2025. Diethyl aminoethyl hexanoate mitigates drought-stimulated leaf senescence via the regulation of water homeostasis, chlorophyll metabolism, and antioxidant defense in creeping bentgrass. Grass Research 5:e004

doi: 10.48130/grares-0025-0002
[43]

Li Y, Zhao H, Duan B, Korpelainen H, Li C. 2011. Effect of drought and ABA on growth, photosynthesis and antioxidant system of Cotinus coggygria seedlings under two different light conditions. Environmental and Experimental Botany 71:107−13

doi: 10.1016/j.envexpbot.2010.11.005
[44]

Xiang DJ, Man LL, Cao S, Liu P, Li GZ, et al. 2020. Heterologous expression of an Agropyron cristatum SnRK2 protein kinase gene (AcSnRK2.11) increases freezing tolerance in transgenic yeast and tobacco. 3 Biotech 10:209

doi: 10.1007/s13205-020-02203-7
[45]

Dong Q, Wallrad L, Almutairi BO, Kudla J. 2022. Ca2+ signaling in plant responses to abiotic stresses. Journal of Integrative Plant Biology 64:287−300

doi: 10.1111/jipb.13228
[46]

Singh KB, Foley RC, Oñate-Sánchez L. 2002. Transcription factors in plant defense and stress responses. Current Opinion in Plant Biology 5:430−36

doi: 10.1016/S1369-5266(02)00289-3
[47]

Zhao J, Zhang S, Yang T, Zeng Z, Huang Z, et al. 2015. Global transcriptional profiling of a cold-tolerant rice variety under moderate cold stress reveals different cold stress response mechanisms. Physiology Plantarum 154:381−94

doi: 10.1111/ppl.12291
[48]

Tan BC, Schwartz SH, Zeevaart JAD, McCarty DR. 1997. Genetic control of abscisic acid biosynthesis in maize. Proceedings of the National Academy of Sciences of the United States of America 94:12235−40

doi: 10.1073/pnas.94.22.12235
[49]

Primo-Capella A, Forner-Giner MÁ, Martínez-Cuenca MR, Terol J. 2022. Comparative transcriptomic analyses of citrus cold-resistant vs. sensitive rootstocks might suggest a relevant role of ABA signaling in triggering cold scion adaption. BMC Plant Biology 22:209

doi: 10.1186/s12870-022-03578-w
[50]

Chen K, Li X, Guo X, Yang L, Qiu L, et al. 2023. Genome-wide identification and expression profiling of the NCED gene family in cold stress response of Prunus mume Siebold & Zucc. Horticulturae 9:839

doi: 10.3390/horticulturae9070839
[51]

Xian L, Sun P, Hu S, Wu J, Liu JH. 2014. Molecular cloning and characterization of CrNCED1, a gene encoding 9-cis-epoxycarotenoid dioxygenase in Citrus reshni, with functions in tolerance to multiple abiotic stresses. Planta 239:61−77

doi: 10.1007/s00425-013-1963-4
[52]

Wang Y, Zhu M, Yang Y, Alam I, Cheng X, et al. 2017. Exogenous application of abscisic acid enhanced chilling tolerance in seedlings of napier grass (Pennisetum purpureum Schum.). Journal of Agricultural Science and Technology 18:417−23

doi: 10.16175/j.cnki.1009-4229.2017.03.008
[53]

An JP, Xu RR, Liu X, Su L, Yang K, et al. 2022. Abscisic acid insensitive 4 interacts with ICE1 and JAZ proteins to regulate ABA signaling-mediated cold tolerance in apple. Journal of Experimental Botany 73(3):980−97

doi: 10.1093/jxb/erab433
[54]

Huang X, Shi H, Hu Z, Liu A, Amombo E, et al. 2017. ABA is involved in regulation of cold stress response in bermudagrass. Frontires in Plant Science 8:1613

doi: 10.3389/fpls.2017.01613
[55]

Yu J, Cang J, Lu Q, Fan B, Xu Q, et al. 2020. ABA enhanced cold tolerance of wheat 'dn1' via increasing ROS scavenging system. Plant Signaling & Behavior 15:1780403

doi: 10.1080/15592324.2020.1780403
[56]

Kumar S, Kaur G, Nayyar H. 2008. Exogenous application of abscisic acid improves cold tolerance in chickpea (Cicer arietinum L.). Journal of Agronomy and Crop Science 194:449−56

doi: 10.1111/j.1439-037X.2008.00335.x
[57]

Shen J, Liu J, Yuan Y, Chen L, Ma J, et al. 2022. The mechanism of abscisic acid regulation of wild Fragaria species in response to cold stress. BMC Genomics 23:670

doi: 10.1186/s12864-022-08889-8
[58]

Kalapos B, Dobrev P, Nagy T, Vítámvás P, Györgyey J, et al. 2016. Transcript and hormone analyses reveal the involvement of ABA-signalling, hormone crosstalk and genotype-specific biological processes in cold-shock response in wheat. Plant Science 253:86−97

doi: 10.1016/j.plantsci.2016.09.017
[59]

Wang X, Liu WC, Zeng XW, Yan S, Qiu YM, et al. 2021. HbSnRK2.6 functions in ABA-regulated cold stress response by promoting HbICE2 transcriptional activity in Hevea brasiliensis. International Journal of Molecular Sciences 22:12707

doi: 10.3390/ijms222312707
[60]

Zhang H, Pei Y, Zhu F, He Q, Zhou Y, et al. 2024. CaSnRK2.4-mediated phosphorylation of CaNAC035 regulates abscisic acid synthesis in pepper (Capsicum annuum L.) responding to cold stress. The Plant Journal 117:1377−91

doi: 10.1111/tpj.16568
[61]

Jeon J, Cho C, Lee MR, van Binh N, Kim J. 2016. CYTOKININ RESPONSE FACTOR2 (CRF2) and CRF3 regulate lateral root development in response to cold stress in Arabidopsis. The Plant Cell 28:1828−43

doi: 10.1105/tpc.15.00909
[62]

Lim CW, Lee SC. 2023. Arabidopsis SnRK2.3/SRK2I plays a positive role in seed germination under cold stress conditions. Environmental and Experimental Botany 212:105399

doi: 10.1016/j.envexpbot.2023.105399
[63]

Xu H, Li J, Wang L, Li X, Li X, et al. 2023. Integrated transcriptomic and metabolomics analysis reveals abscisic acid signal transduction and sugar metabolism pathways as defense responses to cold stress in Argyranthemum frutescens. Environmental and Experimental Botany 205:105115

doi: 10.1016/j.envexpbot.2022.105115
[64]

Miao W, Song J, Huang Y, Liu R, Zou G, et al. 2021. Comparative transcriptomics for pepper (Capsicum annuum L.) under cold stress and after rewarming. Applied Science 11:10204

doi: 10.3390/app112110204
[65]

Catalá R, Santos E, Alonso JM, Ecker JR, Martínez-Zapater JM, et al. 2003. Mutations in the Ca2+/H+ transporter CAX1 increase CBF/DREB1 expression and the cold-acclimation response in Arabidopsis. The Plant Cell 15:2940−51

doi: 10.1105/tpc.015248
[66]

Finka A, Cuendet AFH, Maathuis FJM, Saidi Y, Goloubinoff P. 2012. Plasma membrane cyclic nucleotide gated calcium channels control land plant thermal sensing and acquired thermotolerance. The Plant Cell 24:3333−48

doi: 10.1105/tpc.112.095844
[67]

Nawaz Z, Kakar KU, Saand MA, Shu QY. 2014. Cyclic nucleotide-gated ion channel gene family in rice, identification, characterization and experimental analysis of expression response to plant hormones, biotic and abiotic stresses. BMC Genomics 15:853

doi: 10.1186/1471-2164-15-853
[68]

Zhu SY, Yu XC, Wang XJ, Zhao R, Li Y, et al. 2007. Two calcium-dependent protein kinases, CPK4 and CPK11, regulate abscisic acid signal transduction in Arabidopsis. The Plant Cell 19:3019−36

doi: 10.1105/tpc.107.050666
[69]

Kim KN, Cheong YH, Grant JJ, Pandey GK, Luan S. 2003. CIPK3, a calcium sensor–associated protein kinase that regulates abscisic acid and cold signal transduction in Arabidopsis. The Plant Cell 15:411−23

doi: 10.1105/tpc.006858
[70]

Abbasi F, Onodera H, Toki S, Tanaka H, Komatsu S. 2004. OsCDPK13, a calcium-dependent protein kinase gene from rice, is induced by cold and gibberellin in rice leaf sheath. Plant Molecular Biology 55:541−52

doi: 10.1007/s11103-004-1178-y
[71]

Komatsu S, Yang G, Khan M, Onodera H, Toki S, et al. 2007. Over-expression of calcium-dependent protein kinase 13 and calreticulin interacting protein 1 confers cold tolerance on rice plants. Molecular Genetics and Genomics 277:713−23

doi: 10.1007/s00438-007-0220-6
[72]

Li AL, Zhu YF, Tan XM, Wang X, Wei B, et al. 2008. Evolutionary and functional study of the CDPK gene family in wheat (Triticum aestivum L.). Plant Molecular Biology 66:429−43

doi: 10.1007/s11103-007-9281-5
[73]

Liu J, Whalley HJ, Knight MR. 2015. Combining modelling and experimental approaches to explain how calcium signatures are decoded by calmodulin-binding transcription activators (CAMTAs) to produce specific gene expression responses. New Phytologist 208:174−87

doi: 10.1111/nph.13428
[74]

Zhao C, Wang P, Si T, Hsu CC, Wang L, et al. 2017. MAP kinase cascades regulate the cold response by modulating ICE1 protein stability. Developmental Cell 43:618−629.e5

doi: 10.1016/j.devcel.2017.09.024
[75]

Kim Y, Park S, Gilmour SJ, Thomashow MF. 2013. Roles of CAMTA transcription factors and salicylic acid in configuring the low-temperature transcriptome and freezing tolerance of Arabidopsis. The Plant Journal 75:364−76

doi: 10.1111/tpj.12205
[76]

Zhou J, Xia XJ, Zhou YH, Shi K, Chen Z et al. 2014. RBOH1-dependent H2O2 production and subsequent activation of MPK1/2 play an important role in acclimation-induced cross-tolerance in tomato. Journal of Experimental Botany 65:595−607

doi: 10.1093/jxb/ert404
[77]

Teige M, Scheikl E, Eulgem T, Dóczi R, Ichimura K, et al. 2004. The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. Molecular Cell 15:141−52

doi: 10.1016/j.molcel.2004.06.023
[78]

De Zelicourt A, Colcombet J, Hirt H. 2016. The role of MAPK modules and ABA during abiotic stress signaling. Trends in Plant Science 21:677−85

doi: 10.1016/j.tplants.2016.04.004
[79]

Sukumari Nath V, Kumar Mishra A, Kumar A, Matoušek J, Jakše J. 2019. Revisiting the role of transcription factors in coordinating the defense response against Citrus bark cracking viroid infection in commercial hop (Humulus Lupulus L.). Viruses 11:419

doi: 10.3390/v11050419
[80]

Jiang C, Zhang H, Ren J, Dong J, Zhao X, et al. 2020. Comparative transcriptome-based mining and expression profiling of transcription factors related to cold tolerance in peanut. International Journal of Molecular Science 21:1921

doi: 10.3390/ijms21061921
[81]

Liu H, Xin W, Wang Y, Zhang D, Wang J, et al. 2022. An integrated analysis of the rice transcriptome and lipidome reveals lipid metabolism plays a central role in rice cold tolerance. BMC Plant Biology 22:91

doi: 10.1186/s12870-022-03468-1
[82]

Sharma P, Jha AB, Dubey RS, Pessarakli M. 2012. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany 2012:217037

doi: 10.1155/2012/217037
[83]

Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R. 2010. Reactive oxygen species homeostasis and signaling during drought and salinity stresses. Plant, Cell & Environment 33:453−67

doi: 10.1111/j.1365-3040.2009.02041.x
[84]

Foyer CH, Shigeoka S. 2011. Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiology 155:93−100

doi: 10.1104/pp.110.166181
[85]

Guo Z, Ou W, Lu S, Zhong Q. 2006. Differential responses of antioxidative system to chilling and drought in four rice cultivars differing in sensitivity. Plant Physiology and Biochemistry 44:828−36

doi: 10.1016/j.plaphy.2006.10.024
[86]

Zhang X, Shen L, Li F, Zhang Y, Meng D, et al. 2010. Up-regulating arginase contributes to amelioration of chilling stress and the antioxidant system in cherry tomato fruits. Journal of the Science of Food and Agriculture 90:2195−202

doi: 10.1002/jsfa.4070
[87]

Kou S, Chen L, Tu W, Scossa F, Wang Y, et al. 2018. The arginine decarboxylase gene ADC1, associated to the putrescine pathway, plays an important role in potato cold-acclimated freezing tolerance as revealed by transcriptome and metabolome analyses. The Plant Journal 96:1283−98

doi: 10.1111/tpj.14126
[88]

Alcázar R, Planas J, Saxena T, Zarza X, Bortolotti C, et al. 2010. Putrescine accumulation confers drought tolerance in transgenic Arabidopsis plants over-expressing the homologous Arginine decarboxylase 2 gene. Plant Physiology and Biochemistry 48:547−52

doi: 10.1016/j.plaphy.2010.02.002
[89]

Sheokand S, Kumari A, Sawhney V. 2008. Effect of nitric oxide and putrescine on antioxidative responses under NaCl stress in chickpea plants. Physiology and Molecular Biology of Plants 14:355−62

doi: 10.1007/s12298-008-0034-y
[90]

Zeid IM, Shedeed ZA. 2006. Response of alfalfa to putrescine treatment under drought stress. Biology Plantarum 50:635−40

doi: 10.1007/s10535-006-0099-9
[91]

Guy CL. 1990. Cold acclimation and freezing stress tolerance: role of protein metabolism. Annual Review of Plant Biology 41:187−223

doi: 10.1146/annurev.pp.41.060190.001155
[92]

Ding Y, Shi Y, Yang S. 2019. Advances and challenges in uncovering cold tolerance regulatory mechanisms in plants. New Phytologist 222:1690−704

doi: 10.1111/nph.15696
[93]

Cuevas JC, López-Cobollo R, Alcázar R, Zarza X, Konca C, et al. 2008. Putrescine is involved in Arabidopsis freezing tolerance and cold acclimation by regulating abscisic acid levels in response to low temperature. Plant Physiology 148:1094−105

doi: 10.1104/pp.108.122945
[94]

Alcázar R, Marco F, Cuevas JC, Patron M, Carrasco P, et al. 2006. Involvement of polyamines in plant response to abiotic stress. Biotechnology Letters 28:1867−76

doi: 10.1007/s10529-006-9179-3
[95]

Amini S, Ghobadi C, Yamchi A. 2015. Proline accumulation and osmotic stress: an overview of P5CS gene in plants. Journal Plant Science Molecular Breed 3:44−54

doi: 10.22058/jpmb.2015.17022
[96]

Li W, Meng R, Liu Y, Chen S, Jiang J, et al. 2022. Heterografted chrysanthemums enhance salt stress tolerance by integrating reactive oxygen species, soluble sugar, and proline. Horticulture Research 9:uhac073

doi: 10.1093/hr/uhac073