| [1] |
Askari E, Ehsanzadeh P. 2015. Osmoregulation-mediated differential responses of field-grown fennel genotypes to drought. Industrial Crops and Products 76:494−508 doi: 10.1016/j.indcrop.2015.07.010 |
| [2] |
Fang Y, Xiong L. 2015. General mechanisms of drought response and their application in drought resistance improvement in plants. Cellular and Molecular Life Sciences 72:673−89 doi: 10.1007/s00018-014-1767-0 |
| [3] |
Kim KS, Park SH, Kim DK, Jenks MA. 2007. Influence of water deficit on leaf cuticular waxes of soybean (Glycine max [L.] Merr.). International Journal of Plant Sciences 168:307−16 doi: 10.1086/510496 |
| [4] |
Martin StPaul N, Delzon S, Cochard H. 2017. Plant resistance to drought depends on timely stomatal closure. Ecology Letters 20:1437−47 doi: 10.1111/ele.12851 |
| [5] |
Martin LBB, Rose JKC. 2013. There's more than one way to skin a fruit: formation and functions of fruit cuticles. Journal of Experimental Botany 65:4639−51 doi: 10.1093/jxb/eru301 |
| [6] |
Chen Z, Chen G, Dai F, Wang Y, Hills A, et al. 2017. Molecular evolution of grass stomata. Trends in Plant Science 22:124−39 doi: 10.1016/j.tplants.2016.09.005 |
| [7] |
Yeats TH, Rose JKC. 2013. The formation and function of plant cuticles. Plant Physiology 163:5−20 doi: 10.1104/pp.113.222737 |
| [8] |
Samdur MY, Manivel P, Jain VK, Chikani BM, Gor HK, et al. 2003. Genotypic differences and water-deficit induced enhancement in epicuticular wax load in peanut. Crop Science 43:1294−99 doi: 10.2135/cropsci2003.1294 |
| [9] |
Javelle M, Vernoud V, Rogowsky PM, Ingram GC. 2011. Epidermis: the formation and functions of a fundamental plant tissue. New Phytologist 189:17−39 doi: 10.1111/j.1469-8137.2010.03514.x |
| [10] |
Wang Y, Wang M, Sun Y, Hegebarth D, Li T, et al. 2015. Molecular characterization of TaFAR1 involved in primary alcohol biosynthesis of cuticular wax in hexaploid wheat. Plant and Cell Physiology 56:1944−61 doi: 10.1093/pcp/pcv112 |
| [11] |
Kunst L, Samuels AL. 2003. Biosynthesis and secretion of plant cuticular wax. Progress in Lipid Research 42:51−80 doi: 10.1016/S0163-7827(02)00045-0 |
| [12] |
Baker EA. 1974. The influence of environment on leaf wax development in Brassica oleracea var. gemmifera. New Phytologist 73:955−66 doi: 10.1111/j.1469-8137.1974.tb01324.x |
| [13] |
Li H, Guo Y, Cui Q, Zhang Z, Yan X, et al. 2020. Alkanes (C29 and C31)-mediated intracuticular wax accumulation contributes to melatonin-and ABA-induced drought tolerance in watermelon. Journal of Plant Growth Regulation 39:1441−50 doi: 10.1007/s00344-020-10099-z |
| [14] |
Huang H, Wang L, Qiu D, Zhang N, Bi F. 2021. Changes of morphology, chemical compositions, and the biosynthesis regulations of cuticle in response to chilling injury of banana fruit during storage. Frontiers in Plant Science 12:792384 doi: 10.3389/fpls.2021.792384 |
| [15] |
Bi H, Kovalchuk N, Langridge P, Tricker PJ, Lopato S, et al. 2017. The impact of drought on wheat leaf cuticle properties. BMC Plant Biology 17:85 doi: 10.1186/s12870-017-1033-3 |
| [16] |
Sanjari S, Shobbar ZS, Ghanati F, Afshari-Behbahanizadeh S, Farajpour M, et al. 2021. Molecular, chemical, and physiological analyses of sorghum leaf wax under post-flowering drought stress. Plant Physiology and Biochemistry 159:383−91 doi: 10.1016/j.plaphy.2021.01.001 |
| [17] |
Jian L, Kang K, Choi Y, Suh MC, Paek NC. 2022. Mutation of OsMYB60 reduces rice resilience to drought stress by attenuating cuticular wax biosynthesis. The Plant Journal 112:339−51 doi: 10.1111/tpj.15947 |
| [18] |
Lewandowska M, Keyl A, Feussner I. 2020. Wax biosynthesis in response to danger: its regulation upon abiotic and biotic stress. New Phytologist 227:698−713 doi: 10.1111/nph.16571 |
| [19] |
Kunst L, Samuels L. 2009. Plant cuticles shine: advances in wax biosynthesis and export. Current Opinion in Plant Biology 12:721−27 doi: 10.1016/j.pbi.2009.09.009 |
| [20] |
Hegebarth D, Buschhaus C, Wu M, Bird D, Jetter R. 2016. The composition of surface wax on trichomes of Arabidopsis thaliana differs from wax on other epidermal cells. The Plant Journal 88:762−74 doi: 10.1111/tpj.13294 |
| [21] |
Abdullah HM, Rodriguez J, Salacup JM, Castañeda IS, Schnell DJ, et al. 2021. Increased cuticle waxes by overexpression of WSD1 improves osmotic stress tolerance in Arabidopsis thaliana and Camelina sativa. International Journal of Molecular Sciences 22:5173 doi: 10.3390/ijms22105173 |
| [22] |
Huang H, Ayaz A, Zheng M, Yang X, Zaman W, et al. 2022. Arabidopsis KCS5 and KCS6 play redundant roles in wax synthesis. International Journal of Molecular Sciences 23:4450 doi: 10.3390/ijms23084450 |
| [23] |
Lee SB, Suh MC. 2013. Recent advances in cuticular wax biosynthesis and its regulation in Arabidopsis. Molecular Plant 6:246−49 doi: 10.1093/mp/sss159 |
| [24] |
Negin B, Hen-Avivi S, Almekias-Siegl E, Shachar L, Jander G, et al. 2023. Tree tobacco (Nicotiana glauca) cuticular wax composition is essential for leaf retention during drought, facilitating a speedy recovery following rewatering. New Phytologist 237:1574−89 doi: 10.1111/nph.18615 |
| [25] |
Pighin JA, Zheng H, Balakshin LJ, Goodman IP, Western TL, et al. 2004. Plant cuticular lipid export requires an ABC transporter. Science 306:702−04 doi: 10.1126/science.1102331 |
| [26] |
Seo PJ, Lee SB, Suh MC, Park M, Go YS, et al. 2011. The MYB96 transcription factor regulates cuticular wax biosynthesis under drought conditions in Arabidopsis. The Plant Cell 23:1138−52 doi: 10.1105/tpc.111.083485 |
| [27] |
Hrmova M, Hussain SS. 2021. Plant transcription factors involved in drought and associated stresses. International Journal of Molecular Sciences 22:5662 doi: 10.3390/ijms22115662 |
| [28] |
Kosma DK, Bourdenx B, Bernard A, Parsons EP, Lü S, et al. 2009. The impact of water deficiency on leaf cuticle lipids of Arabidopsis. Plant Physiology 151:1918−29 doi: 10.1104/pp.109.141911 |
| [29] |
Bi H, Luang S, Li Y, Bazanova N, Borisjuk N, et al. 2017. Wheat drought-responsive WXPL transcription factors regulate cuticle biosynthesis genes. Plant Molecular Biology 94:15−32 doi: 10.1007/s11103-017-0585-9 |
| [30] |
Ma Q, Xu X, Wang W, Zhao L, Ma D, et al. 2021. Comparative analysis of alfalfa (Medicago sativa L.) seedling transcriptomes reveals genotype-specific drought tolerance mechanisms. Plant Physiology and Biochemistry 166:203−14 doi: 10.1016/j.plaphy.2021.05.008 |
| [31] |
Hanna WW, Burton GW. 1978. Cytology, reproductive behavior, and fertility characteristics of centipedegrass. Crop Science 18:835−37 doi: 10.2135/cropsci1978.0011183X001800050038x |
| [32] |
Islam MA, Hirata M. 2005. Centipedegrass (Eremochloa ophiuroides (Munro) Hack.): growth behavior and multipurpose usages. Grassland Science 51:183−90 doi: 10.1111/j.1744-697X.2005.00014.x |
| [33] |
Hook JE, Hanna WW, Maw BW. 1992. Quality and growth response of centipedegrass to extended drought. Agronomy Journal 84:606−12 doi: 10.2134/agronj1992.00021962008400040013x |
| [34] |
Li J, Guo H, Zong J, Chen J, Li D, et al. 2020. Genetic diversity in centipedegrass [Eremochloa ophiuroides (Munro) Hack.]. Horticulture Research 7:4 doi: 10.1038/s41438-019-0228-1 |
| [35] |
Wang J, Zi H, Wang R, Liu J, Wang H, et al. 2021. A high-quality chromosome-scale assembly of the centipedegrass [Eremochloa ophiuroides (Munro) Hack.] genome provides insights into chromosomal structural evolution and prostrate growth habit. Horticulture Research 8:201 doi: 10.1038/s41438-021-00636-6 |
| [36] |
Li J, Ma J, Guo H, Zong J, Chen J, et al. 2018. Growth and physiological responses of two phenotypically distinct accessions of centipedegrass (Eremochloa ophiuroides (Munro) Hack.) to salt stress. Plant Physiology and Biochemistry 126:1−10 doi: 10.1016/j.plaphy.2018.02.018 |
| [37] |
Huang B, Duncan RR, Carrow RN. 1997. Drought-resistance mechanisms of seven warm-season turfgrasses under surface soil drying: II. Root aspects. Crop Science 37:1863−69 doi: 10.2135/cropsci1997.0011183X003700060033x |
| [38] |
Kim KS, Beard JB. 2018. Comparative drought resistances among eleven warm-season turfgrasses and associated plant parameters. Weed & Turfgrass Science 7:239−45 doi: 10.5660/WTS.2018.7.3.239 |
| [39] |
Hu S, Liu L, Cao J, Chen N, Wang Z. 2019. Water resilience by centipedegrass green roof: a case study. Buildings 9:141 doi: 10.3390/buildings9060141 |
| [40] |
Katuwal KB, Xiao B, Jespersen D. 2020. Root physiological and biochemical responses of seashore paspalum and centipedegrass exposed to iso-osmotic salt and drought stresses. Crop Science 60:1077−89 doi: 10.1002/csc2.20029 |
| [41] |
Katuwal KB, Yang H, Huang B. 2023. Evaluation of phenotypic and photosynthetic indices to detect water stress in perennial grass species using hyperspectral, multispectral and chlorophyll fluorescence imaging. Grass Research 3:16 doi: 10.48130/GR-2023-0016 |
| [42] |
Song Y, Yu J, Xu M, Wang S, He J, et al. 2024. Physiological factors associated with interspecific variations in drought tolerance in centipedegrass. Agronomy 14:1624 doi: 10.3390/agronomy14081624 |
| [43] |
Barrs HD, Weatherley PE. 1962. A re-examination of the relative turgidity technique for estimating water deficits in leaves. Australian Journal of Biological Sciences 15:413−28 doi: 10.1071/BI9620413 |
| [44] |
Ristic Z, Jenks MA. 2002. Leaf cuticle and water loss in maize lines differing in dehydration avoidance. Journal of Plant Physiology 159:645−51 doi: 10.1078/0176-1617-0743 |
| [45] |
Hu L, Wang Z, Du H, Huang B. 2010. Differential accumulation of dehydrins in response to water stress for hybrid and common bermudagrass genotypes differing in drought tolerance. Journal of Plant Physiology 167:103−09 doi: 10.1016/j.jplph.2009.07.008 |
| [46] |
Yu J, Liu M, Yang Z, Huang B. 2015. Growth and physiological factors involved in interspecific variations in drought tolerance and postdrought recovery in warm-and cool-season turfgrass species. Journal of the American Society for Horticultural Science 140:459−65 doi: 10.21273/JASHS.140.5.459 |
| [47] |
Li Y, Liu J, Li J, Xiao H, Xu Y, et al. 2023. Chemical characterization and discovery of novel quality markers in Citrus aurantium L. fruit from traditional cultivation areas in China using GC–MS-based cuticular waxes analysis. Food Chemistry: X 20:100890 doi: 10.1016/j.fochx.2023.100890 |
| [48] |
Kang Y, Han Y, Torres-Jerez I, Wang M, Tang Y, et al. 2011. System responses to long-term drought and re-watering of two contrasting alfalfa varieties. The Plant Journal 68:871−89 doi: 10.1111/j.1365-313X.2011.04738.x |
| [49] |
Tate TM, Cross JW, Wang R, Bonos SA, Meyer WA. 2023. Inheritance of summer stress tolerance in tall fescue. Grass Research 3:14 doi: 10.48130/GR-2023-0014 |
| [50] |
Sun J, Gu J, Zeng J, Han S, Song A, et al. 2013. Changes in leaf morphology, antioxidant activity and photosynthesis capacity in two different drought-tolerant cultivars of chrysanthemum during and after water stress. Scientia Horticulturae 161:249−58 doi: 10.1016/j.scienta.2013.07.015 |
| [51] |
Quan W, Liu X, Wang H, Chan Z. 2015. Comparative physiological and transcriptional analyses of two contrasting drought tolerant alfalfa varieties. Frontiers in Plant Science 6:1256 doi: 10.3389/fpls.2015.01256 |
| [52] |
Sieber P, Schorderet M, Ryser U, Buchala A, Kolattukudy P, et al. 2000. Transgenic Arabidopsis plants expressing a fungal cutinase show alterations in the structure and properties of the cuticle and postgenital organ fusions. The Plant Cell 12:721−37 doi: 10.1105/tpc.12.5.721 |
| [53] |
Xue D, Zhang X, Lu X, Chen G, Chen Z. 2017. Molecular and evolutionary mechanisms of cuticular wax for plant drought tolerance. Frontiers in Plant Science 8:621 doi: 10.3389/fpls.2017.00621 |
| [54] |
Solanki JK, Sarangi SK. 2015. Effect of drought stress on epicuticular wax load in peanut genotypes. Journal of Applied Biology & Biotechnology 3:46−48 doi: 10.7324/JABB.2015.3410 |
| [55] |
Yu H, Zhang Y, Xie Y, Wang Y, Duan L, et al. 2017. Ethephon improved drought tolerance in maize seedlings by modulating cuticular wax biosynthesis and membrane stability. Journal of Plant Physiology 214:123−33 doi: 10.1016/j.jplph.2017.04.008 |
| [56] |
Zhang X, Ni Y, Xu D, Busta L, Xiao Y, et al. 2021. Integrative analysis of the cuticular lipidome and transcriptome of Sorghum bicolor reveals cultivar differences in drought tolerance. Plant Physiology and Biochemistry 163:285−95 doi: 10.1016/j.plaphy.2021.04.007 |
| [57] |
Zhu X, Xiong L. 2013. Putative megaenzyme DWA1 plays essential roles in drought resistance by regulating stress-induced wax deposition in rice. Proceedings of the National Academy of Sciences of the United States of America 110:17790−95 doi: 10.1073/pnas.1316412110 |
| [58] |
Yang Y, Zhou Z, Li Y, Lv Y, Yang D, et al. 2020. Uncovering the role of a positive selection site of wax ester synthase/diacylglycerol acyltransferase in two closely related Stipa species in wax ester synthesis under drought stress. Journal of Experimental Botany 71:4159−70 doi: 10.1093/jxb/eraa194 |
| [59] |
Zhao Y, Liu X, Wang M, Bi Q, Cui Y, et al. 2021. Transcriptome and physiological analyses provide insights into the leaf epicuticular wax accumulation mechanism in yellowhorn. Horticulture Research 8:134 doi: 10.1038/s41438-021-00564-5 |
| [60] |
Su R, Chen L, Wang Z, Hu Y. 2020. Differential response of cuticular wax and photosynthetic capacity by glaucous and non-glaucous wheat cultivars under mild and severe droughts. Plant Physiology and Biochemistry 147:303−12 doi: 10.1016/j.plaphy.2019.12.036 |
| [61] |
Jiang H, Feakins SJ, Sun H, Feng X, Zhang X, et al. 2020. Dynamic changes in leaf wax n-alkanes and δ13C during leaf development in winter wheat under varied irrigation experiments. Organic Geochemistry 146:104054 doi: 10.1016/j.orggeochem.2020.104054 |
| [62] |
Song Q, Kong L, Yang X, Jiao B, Hu J, et al. 2022. PtoMYB142, a poplar R2R3-MYB transcription factor, contributes to drought tolerance by regulating wax biosynthesis. Tree Physiology 42:2133−47 doi: 10.1093/treephys/tpac060 |
| [63] |
Wang X, Li S, Zhang X, Wang J, Hou T, et al. 2024. Integration of transcriptome and metabolome reveals wax serves a key role in preventing leaf water loss in goji (Lycium barbarum). International Journal of Molecular Sciences 25:10939 doi: 10.3390/ijms252010939 |
| [64] |
Lee SB, Suh MC. 2015. Cuticular wax biosynthesis is up-regulated by the MYB94 transcription factor in Arabidopsis. Plant and Cell Physiology 56:48−60 doi: 10.1093/pcp/pcu142 |
| [65] |
Liu D, Guo W, Guo X, Yang L, Hu W, et al. 2022. Ectopic overexpression of CsECR from navel orange increases cuticular wax accumulation in tomato and enhances its tolerance to drought stress. Frontiers in Plant Science 13:924552 doi: 10.3389/fpls.2022.924552 |
| [66] |
Aharoni A, Dixit S, Jetter R, Thoenes E, Van Arkel G, et al. 2004. The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis. The Plant Cell 16:2463−80 doi: 10.1105/tpc.104.022897 |
| [67] |
Chen N, Song B, Tang S, He J, Zhou Y, et al. 2018. Overexpression of the ABC transporter gene TsABCG11 increases cuticle lipids and abiotic stress tolerance in Arabidopsis. Plant Biotechnology Reports 12:303−13 doi: 10.1007/s11816-018-0495-6 |
| [68] |
Buda GJ, Barnes WJ, Fich EA, Park S, Yeats TH, et al. 2013. An ATP binding cassette transporter is required for cuticular wax deposition and desiccation tolerance in the moss Physcomitrella patens. The Plant Cell 25:4000−13 doi: 10.1105/tpc.113.117648 |
| [69] |
Li L, Li D, Liu S, Ma X, Dietrich CR, et al. 2013. The maize glossy13 gene, cloned via BSR-Seq and Seq-walking encodes a putative ABC transporter required for the normal accumulation of epicuticular waxes. PLoS One 8:e82333 doi: 10.1371/journal.pone.0082333 |
| [70] |
Yang Z, Zhang T, Lang T, Li G, Chen G, et al. 2013. Transcriptome comparative profiling of barley eibi1 mutant reveals pleiotropic effects of HvABCG31 gene on cuticle biogenesis and stress responsive pathways. International Journal of Molecular Sciences 14:20478−91 doi: 10.3390/ijms141020478 |
| [71] |
Gupta BB, Selter LL, Baranwal VK, Arora D, Mishra SK, et al. 2019. Updated inventory, evolutionary and expression analyses of G (PDR) type ABC transporter genes of rice. Plant Physiology and Biochemistry 142:429−39 doi: 10.1016/j.plaphy.2019.08.004 |