| [1] |
Heap I, Duke SO. 2018. Overview of glyphosate-resistant weeds worldwide. Pest Management Science 74(5):1040−49 doi: 10.1002/ps.4760 |
| [2] |
Maggi F, La Cecilia D, Tang FHM, McBratney A. 2020. The global environmental hazard of glyphosate use. Science of the total environment 717:137167 doi: 10.1016/j.scitotenv.2020.137167 |
| [3] |
Klingelhöfer D, Braun M, Brüggmann D, Groneberg DA. 2021. Glyphosate: How do ongoing controversies, market characteristics, and funding influence the global research landscape. Science of the Total Environment 765:144271 doi: 10.1016/j.scitotenv.2020.144271 |
| [4] |
Singh R, Shukla A, Kaur G, Girdhar M, Malik T, et al. 2024. Systemic analysis of glyphosate impact on environment and human health. ACS omega 9(6):6165−83 doi: 10.1021/acsomega.3c08080 |
| [5] |
Spinelli V, Ceci A, Dal Bosco C, Gentili A, Persiani AM. 2021. Glyphosate-eating fungi: Study on fungal saprotrophic strains' ability to tolerate and utilise glyphosate as a nutritional source and on the ability of Purpureocillium lilacinum to degrade it. Microorganisms 9(11):2179 doi: 10.3390/microorganisms9112179 |
| [6] |
Gomes MP, Smedbol E, Chalifour A, Hénault-Ethier L, Labrecque M, et al. 2014. Alteration of plant physiology by glyphosate and its by-product aminomethylphosphonic acid: an overview. Journal of experimental botany 65(17):4691−703 doi: 10.1093/jxb/eru269 |
| [7] |
Carles L, Gardon H, Joseph L, Sanchís J, Farré M, et al. 2019. Meta-analysis of glyphosate contamination in surface waters and dissipation by biofilms. Environment International 124:284−93 doi: 10.1016/j.envint.2018.12.064 |
| [8] |
Chen Y, Chen WJ, Huang Y, Li J, Zhong J, et al. 2022. Insights into the microbial degradation and resistance mechanisms of glyphosate. Environmental Research 215:114153 doi: 10.1016/j.envres.2022.114153 |
| [9] |
Székács A, Darvas B. 2018. Re-registration challenges of glyphosate in the European Union. Frontiers in Environmental Science 6:78 doi: 10.3389/fenvs.2018.00078 |
| [10] |
Ferrante M, Rapisarda P, Grasso A, Favara C, Oliveri Conti G. 2023. Glyphosate and environmental toxicity with "One Health" approach, a review. Environmental Research 235:116678 doi: 10.1016/j.envres.2023.116678 |
| [11] |
Gunarathna S, Gunawardana B, Jayaweera M, Manatunge J, Zoysa K. 2018. Glyphosate and AMPA of agricultural soil, surface water, groundwater and sediments in areas prevalent with chronic kidney disease of unknown etiology, Sri Lanka. Journal of Environmental Science and Health, Part B 53(11):729−737 doi: 10.1080/03601234.2018.1480157 |
| [12] |
Soares C, Pereira R, Spormann S, Fidalgo F. 2019. Is soil contamination by a glyphosate commercial formulation truly harmless to non-target plants? – Evaluation of oxidative damage and antioxidant responses in tomato. Environmental Pollution 247:256−65 doi: 10.1016/j.envpol.2019.01.063 |
| [13] |
García-Pérez JA, Alarcón-Gutiérrez E, Perroni Y, Barois I. 2014. Earthworm communities and soil properties in shaded coffee plantations with and without application of glyphosate. Applied Soil Ecology 83:230−37 doi: 10.1016/j.apsoil.2013.09.006 |
| [14] |
Zobiole LHS, Kremer RJ, Oliveira RS Jr., Constantin J. 2011. Glyphosate affects micro-organisms in rhizospheres of glyphosate-resistant soybeans. Journal of Applied Microbiology 110(1):118−27 doi: 10.1111/j.1365-2672.2010.04864.x |
| [15] |
Hu Y, Mortimer PE, Hyde KD, Kakumyan P, Thongklang N. 2021. Mushroom cultivation for soil amendment and bioremediation. Circular Agricultural Systems 1(1):1−14 |
| [16] |
Kumar A, Yadav AN, Mondal R, Kour D, Subrahmanyam G, et al. 2021. Myco-remediation: a mechanistic understanding of contaminants alleviation from natural environment and future prospect. Chemosphere 284:131325 doi: 10.1016/j.chemosphere.2021.131325 |
| [17] |
Zabaloy MC, Allegrini M, Hernandez Guijarro K, Behrends Kraemer F, Morrás H, et al. 2022. Microbiomes and glyphosate biodegradation in edaphic and aquatic environments: recent issues and trends. World Journal of Microbiology and Biotechnology 38(6):98 doi: 10.1007/s11274-022-03281-w |
| [18] |
Wisitrassameewong K, Karunarathna SC, Thongklang N, Zhao R, Callac P, et al. 2012. Agaricus subrufescens: a review. Saudi journal of biological sciences 19(2):131−46 doi: 10.1016/j.sjbs.2012.01.003 |
| [19] |
Morin E, Kohler A, Baker AR, Foulongne-Oriol M, Lombard V, et al. 2012. Genome sequence of the button mushroom Agaricus bisporus reveals mechanisms governing adaptation to a humic-rich ecological niche. Proceedings of the National Academy of Sciences of the United States of America 109(43):17501−6 doi: 10.1073/pnas.1206847109 |
| [20] |
Matute RG, Figlas D, Mockel G, Curvetto N. 2012. Degradation of metsulfuron methyl by Agaricus blazei Murrill spent compost enzymes. Bioremediation Journal 16(1):31−37 doi: 10.1080/10889868.2011.628353 |
| [21] |
Lopes RX, Zied DC, Martos ET, de Souza RJ, Da Silva R, et al. 2015. Application of spent Agaricus subrufescens compost in integrated production of seedlings and plants of tomato. International Journal of Recycling of Organic Waste in Agriculture 4:211−18 doi: 10.1007/s40093-015-0101-7 |
| [22] |
Hu Y, Bandara AR, Xu J, Kakumyan P, Hyde KD, et al. 2022. The use of Agaricus subrufescens for rehabilitation of agricultural soils. Agronomy 12(9):2034 doi: 10.3390/agronomy12092034 |
| [23] |
Langarica-Fuentes A, Straub D, Wimmer B, Thompson K, Nahnsen S, et al. 2024. Subtle microbial community changes despite rapid glyphosate degradation in microcosms with four German agricultural soils. Applied Soil Ecology 198:105381 doi: 10.1016/j.apsoil.2024.105381 |
| [24] |
Bento CPM, Yang X, Gort G, Xue S, van Dam R, et al. 2016. Persistence of glyphosate and aminomethylphosphonic acid in loess soil under different combinations of temperature, soil moisture and light/darkness. Science of the Total Environment 572:301−11 doi: 10.1016/j.scitotenv.2016.07.215 |
| [25] |
Sun L, Kong D, Gu W, Guo X, Tao W, et al. 2017. Determination of glyphosate in soil/sludge by high performance liquid chromatography. Journal of Chromatography A 1502:8−13 doi: 10.1016/j.chroma.2017.04.018 |
| [26] |
Dong H, Sun H, Fan S, Jiang L, Ma D. 2021. Rhizobacterial communities, enzyme activity, and soil properties affect rice seedling's nitrogen use. Agronomy Journal 113(1):633−44 doi: 10.1002/agj2.20538 |
| [27] |
Shang R, Li S, Huang X, Liu W, Lang X, et al. 2021. Effects of soil properties and plant diversity on soil microbial community composition and diversity during secondary succession. Forests 12(6):805 doi: 10.3390/f12060805 |
| [28] |
Magoč T, Salzberg SL. 2011. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27(21):2957−63 doi: 10.1093/bioinformatics/btr507 |
| [29] |
Edgar RC. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26(19):2460−61 doi: 10.1093/bioinformatics/btq461 |
| [30] |
Bokulich NA, Subramanian S, Faith JJ, Gevers D, Gordon JI, et al. 2013. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nature Methods 10(1):57−59 doi: 10.1038/nmeth.2276 |
| [31] |
Gotelli NJ, Colwell RK. 2011. Estimating species richness. In Biological diversity: frontiers in measurement and assessment, eds. Magurran AE, McGill BJ. Oxford: Oxford University Press. pp. 39−54 |
| [32] |
Shannon CE. 1948. A mathematical theory of communication. The Bell system technical journal 27(3):379−423 doi: 10.1002/j.1538-7305.1948.tb01338.x |
| [33] |
Tamura K, Dudley J, Nei M, Kumar S. 2007. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24(8):1596−99 doi: 10.1093/molbev/msm092 |
| [34] |
Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Proc. Nucleic acids symposium series 41, 1999. Oxford: Oxford University Press. pp. 95−98 |
| [35] |
Padilla JT, Selim HM. 2020. Environmental behavior of glyphosate in soils. In Advances in Agronomy, ed. Sparks DL. vol. 159. UK: Academic Press. pp. 1−34. doi: 10.1016/bs.agron.2019.07.005 |
| [36] |
Kanabar M, Bauer S, Ezedum ZM, Dwyer IP, Moore WS, et al. 2021. Roundup negatively impacts the behavior and nerve function of the Madagascar hissing cockroach (Gromphadorhina portentosa). Environmental Science and Pollution Research 28:32933−32944 doi: 10.1007/s11356-021-13021-6 |
| [37] |
Bhandari G. 2017. Mycoremediation: an eco-friendly approach for degradation of pesticides. In Mycoremediation and Environmental Sustainability, ed. Prasad R. Cham: Springer. pp. 119−31. doi: 10.1007/978-3-319-68957-9_7 |
| [38] |
Akhtar N, Mannan MA. 2020. Mycoremediation: expunging environmental pollutants. Biotechnology Reports 26:e00452 doi: 10.1016/j.btre.2020.e00452 |
| [39] |
Akpasi SO, Anekwe IMS, Tetteh EK, Amune UO, Shoyiga HO, et al. 2023. Mycoremediation as a potentially promising technology: current status and prospects—a review. Applied Sciences 13(8):4978 doi: 10.3390/app13084978 |
| [40] |
Krzyśko-Łupicka T, Orlik A. 1997. The use of glyphosate as the sole source of phosphorus or carbon for the selection of soil-borne fungal strains capable to degrade this herbicide. Chemosphere 34(12):2601−5 doi: 10.1016/S0045-6535(97)00103-3 |
| [41] |
Guo J, Song X, Li R, Zhang Q, Zheng S, et al. 2022. Isolation of a degrading strain of Fusarium verticillioides and bioremediation of glyphosate residue. Pesticide Biochemistry and Physiology 182:105031 doi: 10.1016/j.pestbp.2021.105031 |
| [42] |
Eman A, Abdel-Megeed A, Suliman AMA, Sadik MW, Sholkamy EN. 2013. Biodegradation of glyphosate by fungal strains isolated from herbicides polluted-soils in Riyadh area. International Journal of Current Microbioly and Applied Sciences 2(8):359−81 |
| [43] |
Wang C, Kuzyakov Y. 2024. Mechanisms and implications of bacterial–fungal competition for soil resources. The ISME Journal 18(1):wrae073 doi: 10.1093/ismejo/wrae073 |
| [44] |
Büyüksönmez F, Rynk R, Hess TF, Bechinski E. 2000. Literature review: occurrence, degradation and fate of pesticides during composting: part II: occurrence and fate of pesticides in compost and composting systems. Compost Science & Utilization 8(1):61−81 doi: 10.1080/1065657X.2000.10701751 |
| [45] |
Shann JR, Boyle JJ. 1994. Influence of plant species on in situ rhizosphere degradation. In Bioremediation through rhizosphere technology, eds. Anderson TA, Coats JR. Washington, DC: ACS Publications. pp. 70−81. doi: 10.1021/bk-1994-0563.ch006 |
| [46] |
Kravvariti K, Tsiropoulos NG, Karpouzas DG. 2010. Degradation and adsorption of terbuthylazine and chlorpyrifos in biobed biomixtures from composted cotton crop residues. Pest Management Science 66(10):1122−28 doi: 10.1002/ps.1990 |
| [47] |
Machuca Á, Córdova C, Stolpe NB, Barrera JA, Chávez D, et al. 2018. In vitro sensitivity of forest soil enzymes to temperature increase in Western Patagonia. Journal of soil science and plant nutrition 18(1):202−19 doi: 10.4067/s0718-95162018005000801 |
| [48] |
Pizzul L, del Pilar Castillo M, Stenström J. 2009. Degradation of glyphosate and other pesticides by ligninolytic enzymes. Biodegradation 20:751−59 doi: 10.1007/s10532-009-9263-1 |
| [49] |
Borggaard OK, Gimsing AL. 2008. Fate of glyphosate in soil and the possibility of leaching to ground and surface waters: a review. Pest Management Science: formerly Pesticide Science 64(4):441−56 doi: 10.1002/ps.1512 |
| [50] |
Schnürer Y, Persson P, Nilsson M, Nordgren A, Giesler R. 2006. Effects of surface sorption on microbial degradation of glyphosate. Environmental science & technology 40(13):4145−50 doi: 10.1021/es0523744 |
| [51] |
Wardle DA, Parkinson D. 1990. Response of the soil microbial biomass to glucose, and selective inhibitors, across a soil moisture gradient. Soil Biology and Biochemistry 22(6):825−34 doi: 10.1016/0038-0717(90)90163-T |
| [52] |
Ayansina ADV, Oso BA. 2006. Effect of two commonly used herbicides on soil microflora at two different concentrations. African Journal of Biotechnology 5(2):129−32 |
| [53] |
Ramula S, Mathew SA, Kalske A, Nissinen R, Saikkonen K, et al. 2022. Glyphosate residues alter the microbiota of a perennial weed with a minimal indirect impact on plant performance. Plant and Soil 472:161−74 doi: 10.1007/s11104-021-05196-1 |
| [54] |
Druille M, Cabello MN, Omacini M, Golluscio RA. 2013. Glyphosate reduces spore viability and root colonization of arbuscular mycorrhizal fungi. Applied Soil Ecology 64:99−103 doi: 10.1016/j.apsoil.2012.10.007 |
| [55] |
Guijarro KH, Aparicio V, De Gerónimo E, Castellote M, Figuerola EL, et al. 2018. Soil microbial communities and glyphosate decay in soils with different herbicide application history. Science of the Total Environment 634:974−82 doi: 10.1016/j.scitotenv.2018.03.393 |
| [56] |
Lancaster SH, Hollister EB, Senseman SA, Gentry TJ. 2010. Effects of repeated glyphosate applications on soil microbial community composition and the mineralization of glyphosate. Pest Management Science: formerly Pesticide Science 66(1):59−64 doi: 10.1002/ps.1831 |
| [57] |
Zhang Y, Cong J, Lu H, Li G, Qu Y, et al. 2014. Community structure and elevational diversity patterns of soil Acidobacteria. Journal of Environmental Sciences 26(8):1717−24 doi: 10.1016/j.jes.2014.06.012 |
| [58] |
Fei Y, Huang S, Zhang H, Tong Y, Wen D, et al. 2020. Response of soil enzyme activities and bacterial communities to the accumulation of microplastics in an acid cropped soil. Science of the Total Environment 707:135634 doi: 10.1016/j.scitotenv.2019.135634 |