[1]

Kuhn N, Guan L, Dai ZW, Wu BH, Lauvergeat V, et al. 2014. Berry ripening: recently heard through the grapevine. Journal of Experimental Botany 65:4543−59

doi: 10.1093/jxb/ert395
[2]

Li J, Quan Y, Wang L, Wang S. 2023. Brassinosteroid promotes grape berry quality-focus on physicochemical qualities and their coordination with enzymatic and molecular processes: a review. International Journal of Molecular Science 24:445

doi: 10.3390/ijms24010445
[3]

Symons GM, Davies C, Shavrukov Y, Dry IB, Reid JB, et al. 2006. Grapes on steroids. Brassinosteroids are involved in grape berry ripening. Plant Physiology 140:150−58

doi: 10.1104/pp.105.070706
[4]

Clouse SD, Sasse JM. 1998. Brassinosteroids: essential regulators of plant growth and development. Annual Review of Plant Physiology and Plant Molecular Biology 49:427−51

doi: 10.1146/annurev.arplant.49.1.427
[5]

Wei Z, Li J. 2016. Brassinosteroids regulate root growth, development, and symbiosis. Molecular Plant 9:86−100

doi: 10.1016/j.molp.2015.12.003
[6]

Wei Z, Li J. 2020. Regulation of brassinosteroid homeostasis in higher plants. Frontiers in Plant Science 11:583622

doi: 10.3389/fpls.2020.583622
[7]

Kour J, Kohli SK, Khanna K, Bakshi P, Sharma P, Singh AD, et al. 2021. Brassinosteroid signaling, crosstalk and, physiological functions in plants under heavy metal stress. Frontiers in Plant Science 12:608061

doi: 10.3389/fpls.2021.608061
[8]

Zhao B, Li J. 2012. Regulation of brassinosteroid biosynthesis and inactivation. Journal of Integrative Plant Biology 54:746−59

doi: 10.1111/j.1744-7909.2012.01168.x
[9]

Choe S, Dilkes BP, Fujioka S, Takatsuto S, Sakurai A, et al. 1998. The DWF4 gene of Arabidopsis a cytochrome P450 that mediates multiple 22 α-hydroxylation steps in brassinosteroid biosynthesis. The Plant Cell 10:231−43

doi: 10.1105/tpc.10.2.231
[10]

Azpiroz R, Wu Y, Locascio JC, Feldmann KA. 1998. An Arabidopsis brassinosteroid-dependent mutant is blocked in cell elongation. The Plant Cell 10:219−30

doi: 10.1105/tpc.10.2.219
[11]

Ma Y, Xue H, Zhang L, Zhang F, Ou C, et al. 2016. Involvement of auxin and brassinosteroid in dwarfism of autotetraploid apple (Malus× domestica). Scientific Reports 6:26719

doi: 10.1038/srep26719
[12]

Li J, Chory J. 1997. A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell 90:929−38

doi: 10.1016/S0092-8674(00)80357-8
[13]

Noguchi T, Fujioka S, Choe S, Takatsuto S, Yoshida S, et al. 1999. Brassinosteroid insensitive dwarf mutants of Arabidopsis accumulate brassinosteroids. Plant Physiology 121:743−52

doi: 10.1104/pp.121.3.743
[14]

Clouse SD, Langford M, McMorris TC. 1996. A brassinosteroid-Insensitive mutant in Arabidopsis thaliana exhibits multiple defects in growth and development. Plant Physiology 111:671−78

doi: 10.1104/pp.111.3.671
[15]

Wang ZY, Nakano T, Gendron J, He J, Chen M, et al. 2002. Nuclear-localized BZR1 mediates brassinosteroid-induced growth and feedback suppression of brassinosteroid biosynthesis. Developmental Cell 2:505−13

doi: 10.1016/S1534-5807(02)00153-3
[16]

Yin Y, Wang ZY, Mora-Garcia S, Li J, Yoshida S, et al. 2002. BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation. Cell 109:181−91

doi: 10.1016/S0092-8674(02)00721-3
[17]

Yu X, Li L, Zola J, Aluru M, Ye H, et al. 2011. A brassinosteroid transcriptional network revealed by genome-wide identification of BESI target genes in Arabidopsis thaliana. The Plant Journal 65:634−46

doi: 10.1111/j.1365-313X.2010.04449.x
[18]

Liu L, Liu H, Li S, Zhang X, Zhang M, et al. 2016. Regulation of BZR1 in fruit ripening revealed by iTRAQ proteomics analysis. Scientific Reports 6:33635

doi: 10.1038/srep33635
[19]

Xi ZM, Zhang ZW, Huo SS, Luan LY, Gao X, et al. 2013. Regulating the secondary metabolism in grape berry using exogenous 24-epibrassinolide for enhanced phenolics content and antioxidant capacity. Food Chemistry 141:3056−65

doi: 10.1016/j.foodchem.2013.05.137
[20]

Zhou Y, Yuan C, Ruan S, Zhang Z, Meng J, et al. 2018. Exogenous 24-epibrassinolide interacts with light to regulate anthocyanin and proanthocyanidin biosynthesis in Cabernet Sauvignon (Vitis vinifera L.). Molecules 23:93

doi: 10.3390/molecules23010093
[21]

Li J, Javed HU, Wu Z, Wang L, Han J, et al. 2022. Improving berry quality and antioxidant ability in 'Ruidu Hongyu' grapevine through preharvest exogenous 2,4-epibrassinolide, jasmonic acid and their signaling inhibitors by regulating endogenous phytohormones. Frontiers in Plant Science 13:1035022

doi: 10.3389/fpls.2022.1035022
[22]

Wang P, Yu A, Ji X, Mu Q, Salman Haider M, et al. 2022. Transcriptome and metabolite integrated analysis reveals that exogenous ethylene controls berry ripening processes in grapevine. Food Research International 155:111084

doi: 10.1016/j.foodres.2022.111084
[23]

Xu F, Xi ZM, Zhang H, Zhang CJ, Zhang ZW. 2015. Brassinosteroids are involved in controlling sugar unloading in Vitis vinifera 'Cabernet Sauvignon' berries during véraison. Plant Physiology and Biochemistry 94:197−208

doi: 10.1016/j.plaphy.2015.06.005
[24]

Yang B, Yao H, Zhang J, Li Y, Ju Y, et al. 2020. Effect of regulated deficit irrigation on the content of soluble sugars, organic acids and endogenous hormones in Cabernet Sauvignon in the Ningxia region of China. Food Chemistry 312:126020

doi: 10.1016/j.foodchem.2019.126020
[25]

Zhang K, Liu Z, Guan L, Zheng T, Jiu S, et al. 2018. Changes of anthocyanin component biosynthesis in 'Summer Black' grape berries after the red flesh mutation occurred. Journal of Agricultural and Food Chemistry 66:9209−18

doi: 10.1021/acs.jafc.8b02150
[26]

Zhang Z, Shi Y, Ma Y, Yang X, Yin X, et al. 2020. The strawberry transcription factor FaRAV1 positively regulates anthocyanin accumulation by activation of FaMYB10 and anthocyanin pathway genes. Plant Biotechnology Journal 18:2267−79

doi: 10.1111/pbi.13382
[27]

Cheng S, Wu T, Gao J, Han X, Huang W, et al. 2023. Color myth: anthocyanins reactions and enological approaches achieving their stabilization in the aging process of red wine. Food Innovation and Advances 2:255−71

doi: 10.48130/FIA-2023-0027
[28]

Crupi P, Alba V, Masi G, Caputo AR, Tarricone L. 2019. Effect of two exogenous plant growth regulators on the color and quality parameters of seedless table grape berries. Food Research International 126:108667

doi: 10.1016/j.foodres.2019.108667
[29]

Vidya Vardhini B, Rao SSR. 2002. Acceleration of ripening of tomato pericarp discs by brassinosteroids. Phytochemistry 61:843−47

doi: 10.1016/S0031-9422(02)00223-6
[30]

Zaharah SS, Singh Z, Symons GM, Reid JB. 2012. Role of brassinosteroids, ethylene, abscisic acid, and indole-3-acetic acid in mango fruit ripening. Journal of Plant Growth Regulation 31:363−72

doi: 10.1007/s00344-011-9245-5
[31]

Chai YM, Zhang Q, Tian L, Li CL, Xing Y, et al. 2013. Brassinosteroid is involved in strawberry fruit ripening. Plant Growth Regulation 69:63−69

doi: 10.1007/s10725-012-9747-6
[32]

Choudhary SP, Yu JQ, Yamaguchi-Shinozaki K, Shinozaki K, Tran LSP. 2012. Benefits of brassinosteroid crosstalk. Trends in Plant Science 10:594−605

doi: 10.1016/j.tplants.2012.05.012
[33]

Hu S, Liu L, Li S, Shao Z, Meng F, et al. 2020. Regulation of fruit ripening by the brassinosteroid biosynthetic gene SlCYP90B3 via an ethylene-dependent pathway in tomato. Horticulture Research 7:163

doi: 10.1038/s41438-020-00383-0
[34]

Ziliotto F, Corso M, Rizzini FM, Rasori A, Botton A, et al. 2012. Grape berry ripening delay induced by a pre-véraison NAA treatment is paralleled by a shift in the expression pattern of auxin- and ethylene-related genes. BMC Plant Biology 12:185

doi: 10.1186/1471-2229-12-185
[35]

Guo YF, Shan W, Liang SM, Wu CJ, Wei W, et al. 2019. MaBZR1/2 act as transcriptional repressors of ethylene biosynthetic genes in banana fruit. Physiologia Plantarum 165:555−68

doi: 10.1111/ppl.12750
[36]

Zhang S, Cai Z, Wang X. 2009. The primary signaling outputs of brassinosteroids are regulated by abscisic acid signaling. Proceedings of the National Academy of Sciences of the United States of America 106:4543−48

doi: 10.1073/pnas.0900349106
[37]

Yang X, Bai Y, Shang J, Xin R, Tang W. 2016. The antagonistic regulation of abscisic acid-inhibited root growth by brassinosteroids is partially mediated via direct suppression of abscisic acid insensitive 5 expression by brassinazole resistant 1. Plant Cell and Environment 39:1994−2003

doi: 10.1111/pce.12763
[38]

Ha YM, Shang Y, Yang D, Nam KH. 2018. Brassinosteroid reduces ABA accumulation leading to the inhibition of ABA-induced stomatal closure. Biochemical and Biophysical Research Communications 504:143−48

[39]

Wang YT, Chen ZY, Jiang Y, Duan BB, Xi ZM. 2019. Involvement of ABA and antioxidant system in brassinosteroid-induced water stress tolerance of grapevine (Vitis vinifera L.). Scientia Horticulturae 256:108596

doi: 10.1016/j.scienta.2019.108596
[40]

Bao F, Shen J, Brady SR, Muday GK, Asami T, et al. 2004. Brassinosteroids interact with auxin to promote lateral root development in Arabidopsis. Plant Physiology 134:1624−31

doi: 10.1104/pp.103.036897
[41]

He Y, Li J, Ban Q, Han S, Rao J. 2018. Role of brassinosteroids in Persimmon (Diospyros kaki L.) fruit ripening. Journal of Agricultural and Food Chemistry 66:2637−44

doi: 10.1021/acs.jafc.7b06117
[42]

Ban Z, Niu C, Li L, Gao Y, Liu L, et al. 2024. Exogenous brassinolides and calcium chloride synergically maintain quality attributes of jujube fruit (Ziziphus jujuba Mill.). Postharvest Biology and Technology 216:113039

doi: 10.1016/j.postharvbio.2024.113039
[43]

Ahammed GJ, Zhou YH, Xia XJ, Mao WH, Shi K, et al. 2013. Brassinosteroid regulates secondary metabolism in tomato towards enhanced tolerance to phenanthrene. Biologia Plantarum 57:154−58

doi: 10.1007/s10535-012-0128-9
[44]

Shao X, Liu F, Shen Q, He W, Jia B, et al. 2024. Transcriptomics and metabolomics reveal major quality regulations during melon fruit development and ripening. Food Innovation and Advances 3:144−54

doi: 10.48130/fia-0024-0013
[45]

Percio F, Rubio L, Amorim-Silva V, Botella MA. 2025. Crucial roles of brassinosteroids in cell wall composition and structure across species: new insights and biotechnological applications. Plant, Cell & Environment 65:1495−99

doi: 10.1111/pce.15258
[46]

Poppenberger B, Russinova E, Savaldi-Goldstein S. 2024. Brassinosteroids in Focus. Plant Cell Physiology 65:1495−99

doi: 10.1093/pcp/pcae112
[47]

Manghwar H, Hussain A, Ali Q, Liu F. 2022. Brassinosteroids (BRs) role in plant development and coping with different stresses. International Journal of Molecular Sciences 23:1012

doi: 10.3390/ijms23031012
[48]

Nolan TM, Vukašinović N, Liu D, Russinova E, Yin Y. 2020. Brassinosteroids: multidimensional regulators of plant growth, development, and stress responses. The Plant Cell 32:295−318

doi: 10.1105/tpc.19.00335
[49]

Ali, B. 2017. Practical applications of brassinosteroids in horticulture-some field perspectives. Scientia Horticulturae 225:15−21

doi: 10.1016/j.scienta.2017.06.051
[50]

Coll Y, Coll F, Amorós A, Pujol M. 2015. Brassinosteroids roles and applications: an up-date. Biologia 70:726−32

doi: 10.1515/biolog-2015-0085