[1]

Cortijo S, Charoensawan V, Brestovitsky A, Buning R, Ravarani C, et al. 2017. Transcriptional regulation of the ambient temperature response by H2A.Z nucleosomes and HSF1 transcription factors in Arabidopsis. Molecular Plant 10:1258−73

doi: 10.1016/j.molp.2017.08.014
[2]

Miao R, Li M, Wen Z, Meng J, Liu X, et al. 2023. Whole-genome identification of regulatory function of CDPK gene families in cold stress response for Prunus mume and Prunus mume var. Tortuosa. Plants 12:2548

doi: 10.3390/plants12132548
[3]

Guo M, Liu JH, Ma X, Luo DX, Gong ZH, et al. 2016. The plant heat stress transcription factors (HSFs): structure, regulation, and function in response to abiotic stresses. Frontiers in Plant Science 7:114

doi: 10.3389/fpls.2016.00114
[4]

Zhang Q, Geng J, Du Y, Zhao Q, Zhang W, et al. 2022. Heat shock transcription factor (Hsf) gene family in common bean (Phaseolus vulgaris): genome-wide identification, phylogeny, evolutionary expansion and expression analyses at the sprout stage under abiotic stress. BMC Plant Biology 22:33

doi: 10.1186/s12870-021-03417-4
[5]

Ohama N, Sato H, Shinozaki K, Yamaguchi-Shinozaki K. 2017. Transcriptional regulatory network of plant heat stress response. Trends in Plant Science 22:53−65

doi: 10.1016/j.tplants.2016.08.015
[6]

ul Haq S, Khan A, Ali M, Khattak AM, Gai WX, et al. 2019. Heat shock proteins: dynamic biomolecules to counter plant biotic and abiotic stresses. International Journal of Molecular Sciences 20:5321

doi: 10.3390/ijms20215321
[7]

Fortunato S, Lasorella C, Dipierro N, Vita F, de Pinto MC. 2023. Redox signaling in plant heat stress response. Antioxidants 12:605

doi: 10.3390/antiox12030605
[8]

Zhao J, Lu Z, Wang L, Jin B. 2021. Plant responses to heat stress: physiology, transcription, noncoding RNAs, and epigenetics. International Journal of Molecular Sciences 22:117

doi: 10.3390/ijms22010117
[9]

Jacob P, Hirt H, Bendahmane A. 2017. The heat-shock protein/chaperone network and multiple stress resistance. Plant Biotechnology Journal 15:405−14

doi: 10.1111/pbi.12659
[10]

Kopecká R, Kameniarová M, Černý M, Brzobohatý B, Novák J. 2023. Abiotic stress in crop production. International Journal of Molecular Sciences 24:6603

doi: 10.3390/ijms24076603
[11]

Chaturvedi P, Wiese AJ, Ghatak A, Záveská Drábková L, Weckwerth W, et al. 2021. Heat stress response mechanisms in pollen development. New Phytologist 231:571−85

doi: 10.1111/nph.17380
[12]

Hao Q, Li T, Lu G, Wang S, Li Z, et al. 2024. Chlorophyllase (PsCLH1) and light-harvesting chlorophyll a/b binding protein 1 (PsLhcb1) and PsLhcb5 maintain petal greenness in Paeonia suffruticosa 'Lv Mu Yin Yu'. Journal of Advanced Research 00:In Press, Corrected Proof

doi: 10.1016/j.jare.2024.09.003
[13]

Zhao S, Wei Y, Pang H, Xu J, Li Y, et al. 2020. Genome-wide identification of the PEBP genes in pears and the putative role of PbFT in flower bud differentiation. PeerJ 8:e8928

doi: 10.7717/peerj.8928
[14]

Zhao D, Tang W, Hao Z, Tao J. 2015. Identification of flavonoids and expression of flavonoid biosynthetic genes in two coloured tree peony flowers. Biochemical and Biophysical Research Communications 459:450−56

doi: 10.1016/j.bbrc.2015.02.126
[15]

Zhang X, Li Y, Wang X, Peng L, Liu Z, et al. 2023. Overexpression of a novel F-box protein PsFFL1 from tree peony (Paeonia suffruticosa) confers drought tolerance in tobacco. Plant Growth Regulation 101:131−43

doi: 10.1007/s10725-023-01007-y
[16]

Ogawa K, Nakamura S, Sugimoto S, Tsukioka J, Hinomaru F, et al. 2015. Constituents of flowers of Paeoniaceae plants, Paeonia suffruticosa and Paeonia lactiflora. Phytochemistry Letters 12:98−104

doi: 10.1016/j.phytol.2015.03.002
[17]

Yuan Y, Zhou N, Bai S, Zeng F, Liu C, et al. 2024. Evolutionary and integrative analysis of the gibberellin 20-oxidase, 3-oxidase, and 2-oxidase gene family in Paeonia ostii: insight into their roles in flower senescence. Agronomy 14:590

doi: 10.3390/agronomy14030590
[18]

Wang X, Wang Q, Hao S, Zhu J, Kai G, et al. 2024. Genome-wide identification and characterization of Dof gene family in Salvia miltiorrhiza. Ornamental Plant Research 4:e031

doi: 10.48130/opr-0024-0030
[19]

Zhang G, Gu C, Ye Y, Zhao Y, Shang L, et al. 2023. Characterization, evolutionary analysis, and expression pattern analysis of the heat shock transcription factors and drought stress response in Heimia myrtifolia. Horticulturae 9:588

doi: 10.3390/horticulturae9050588
[20]

Wu N, Lu B, Muhammad Y, Cao Y, Rong J. 2024. Characterization and expression analysis of GLABRA3 (GL3) genes in cotton: insights into trichome development and hormonal regulation. Molecular Biology Reports 51:479

doi: 10.1007/s11033-024-09412-w
[21]

De Maesschalck C, Van Immerseel F, Eeckhaut V, De Baere S, Cnockaert M, et al. 2014. Faecalicoccus acidiformans gen. nov., sp. nov., isolated from the chicken caecum, and reclassification of Streptococcus pleomorphus (Barnes et al. 1977), Eubacterium biforme (Eggerth 1935) and Eubacterium cylindroides (Cato et al. 1974) as Faecalicoccus pleomorphus comb. nov., Holdemanella biformis gen. nov., comb. nov. and Faecalitalea cylindroides gen. nov., comb. nov., respectively, within the family Erysipelotrichaceae. International Journal of Systematic and Evolutionary Microbiology 64:3877−84

doi: 10.1099/ijs.0.064626-0
[22]

Yang QQ, Yang F, Liu CY, Zhao YQ, Lu XJ, et al. 2024. Genome-wide analysis of the HSF family in Allium sativum L. and AsHSFB1 overexpression in Arabidopsis under heat stress. BMC Genomics 25:1072

doi: 10.1186/s12864-024-11002-w
[23]

Shen C, Yuan J, Ou X, Ren X, Li X. 2021. Genome-wide identification of alcohol dehydrogenase (ADH) gene family under waterlogging stress in wheat (Triticum aestivum). PeerJ 9:e11861

doi: 10.7717/peerj.11861
[24]

Liu Q, Yang J, Wang Z, Xu X, Mao X, et al. 2015. Genome-wide classification, identification and expression profile of the C3HC4-type RING finger gene family in poplar (Populus trichocarpa). Plant Molecular Biology Reporter 33:1740−54

doi: 10.1007/s11105-015-0870-1
[25]

Ma J, Zhang G, Ye Y, Shang L, Hong S, et al. 2022. Genome-wide identification and expression analysis of hsf transcription factors in alfalfa (Medicago sativa) under abiotic stress. Plants 11:2763

doi: 10.3390/plants11202763
[26]

Yuan J, Jiang S, Jian J, Liu M, Yue Z, et al. 2022. Genomic basis of the giga-chromosomes and giga-genome of tree peony Paeonia ostii. Nature Communications 13:7328

doi: 10.1038/s41467-022-35063-1
[27]

Li L, He S, Zhang P, Li D, Song Y, et al. 2024. Integration of genome-wide identification and transcriptome analysis of class III peroxidases in Paeonia ostii: insight into their roles in adventitious roots, heat tolerance, and petal senescence. International Journal of Molecular Sciences 25:12122

doi: 10.3390/ijms252212122
[28]

Duan H, Yu Q, Ni Y, Li J, Yu L, et al. 2024. Calcium combined with vacuum treatment improves postharvest storage quality of Agaricus bisporus by regulating polyamine metabolism. Postharvest Biology and Technology 210:112735

doi: 10.1016/j.postharvbio.2023.112735
[29]

Wen K, Li X, Yin T, Zhu L, Chen C, et al. 2024. A new pathway model of the response of Hsf gene family members to abiotic and biotic stresses in sweet orange revealed by genome-wide identification and expression profile analysis. South African Journal of Botany 174:23−39

doi: 10.1016/j.sajb.2024.08.057
[30]

Zhang L, Li T, Wang L, Cao K, Gao W, et al. 2024. A wheat heat shock transcription factor gene, TaHsf-7A, regulates seed dormancy and germination. Plant Physiology and Biochemistry 210:108541

doi: 10.1016/j.plaphy.2024.108541
[31]

Zhao K, Dang H, Zhou L, Hu J, Jin X, et al. 2023. Genome-wide identification and expression analysis of the HSF gene family in poplar. Forests 14:510

doi: 10.3390/f14030510
[32]

Ji Q. 2008. Genome-wide analysis of HSF and bZIP transcription factor families in Arabidopsis thaliana, Oryza sativa and Populus trichocarpa. Thesis. Shanghai University, China

[33]

Hasanuzzaman M, Fujita M, Oku H, Islam T. 2019. Plant tolerance to environmental stress: role of phytoprotectants. Boca Raton: CRC Press. doi: 10.1201/9780203705315

[34]

Chauhan H, Khurana N, Agarwal P, Khurana JP, Khurana P. 2013. A seed preferential heat shock transcription factor from wheat provides abiotic stress tolerance and yield enhancement in transgenic Arabidopsis under heat stress environment. PLoS One 8:e79577

doi: 10.1371/journal.pone.0079577
[35]

Deng Z, Liu H, He C, Shou C, Han Z. 2021. Heat shock protein 70 (Hsp70) and heat shock transcription factor (Hsf) gene families in Cynoglossus semilaevis: genome-wide identification and correlation analysis in response to low salinity stress. Marine and Freshwater Research 72:1132−41

doi: 10.1071/MF20326
[36]

Zhang J, Liu B, Li J, Zhang L, Wang Y, et al. 2015. Hsf and Hsp gene families in Populus: genome-wide identification, organization and correlated expression during development and in stress responses. BMC Genomics 16:181

doi: 10.1186/s12864-015-1398-3
[37]

Yurina NP. 2023. Heat shock proteins in plant protection from oxidative stress. Molecular Biology 57:951−64

doi: 10.1134/S0026893323060201
[38]

Yuan T, Liang JX, Dai JH, Zhou XR, Liao WH, et al. 2022. Genome-wide identification of Eucalyptus heat shock transcription factor family and their transcriptional analysis under salt and temperature stresses. International Journal of Molecular Sciences 23:8044

doi: 10.3390/ijms23148044
[39]

Kumar A, Kanak KR, Arunachalam A, Dass RS, Lakshmi PTV. 2022. Comparative transcriptome profiling and weighted gene co-expression network analysis to identify core genes in maize (Zea mays L.) silks infected by multiple fungi. Frontiers in Plant Science 13:985396

doi: 10.3389/fpls.2022.985396
[40]

Wang Q, Zeng X, Song Q, Sun Y, Feng Y, et al. 2020. Identification of key genes and modules in response to Cadmium stress in different rice varieties and stem nodes by weighted gene co-expression network analysis. Scientific Reports 10:9525

doi: 10.1038/s41598-020-66132-4