| [1] |
Diao Q, Tian S, Cao Y, Yao D, Fan H, et al. 2023. Transcriptome analysis reveals association of carotenoid metabolism pathway with fruit color in melon. |
| [2] |
Duan X, Jiang C, Zhao Y, Gao G, Li M, et al. 2022. Transcriptome and metabolomics analysis revealed that CmWRKY49 regulating CmPSY1 promotes β-carotene accumulation in orange fleshed oriental melon. |
| [3] |
Nuñez-Palenius HG, Gomez-Lim M, Ochoa-Alejo N, Grumet R, Lester G, et al. 2008. Melon fruits: genetic diversity, physiology, and biotechnology features. |
| [4] |
Guo X, Xu J, Cui X, Chen H, Qi H. 2017. iTRAQ-based protein profiling and fruit quality changes at different development stages of oriental melon. |
| [5] |
Ding BY, Niu J, Shang F, Yang L, Chang TY, et al. 2019. Characterization of the geranylgeranyl diphosphate synthase gene in Acyrthosiphon pisum (Hemiptera: Aphididae) and its association with carotenoid biosynthesis. |
| [6] |
Hirschberg J. 2001. Carotenoid biosynthesis in flowering plants. |
| [7] |
Rodrigo-Baños M, Garbayo I, Vílchez C, Bonete MJ, Martínez-Espinosa RM. 2015. Carotenoids from haloarchaea and their potential in biotechnology. |
| [8] |
Watkins JL, Pogson BJ. 2020. Prospects for carotenoid biofortification targeting retention and catabolism. |
| [9] |
Sun Q, He Z, Wei R, Yin Y, Ye J, et al. 2023. Transcription factor CsTT8 promotes fruit coloration by positively regulating the methylerythritol 4-phosphate pathway and carotenoid biosynthesis pathway in citrus (Citrus spp.). |
| [10] |
Lawrence JD, Li H, Rauchfuss TB, Bénard M, Rohmer MM. 2001. Diiron azadithiolates as models for the iron-only hydrogenase active site: synthesis, structure, and stereoelectronics. |
| [11] |
Schwender J, Gemünden C, Lichtenthaler HK. 2001. Chlorophyta exclusively use the 1-deoxyxylulose 5-phosphate/2-C-methylerythritol 4-phosphate pathway for the biosynthesis of isoprenoids. |
| [12] |
Lu S, Li L. 2008. Carotenoid metabolism: biosynthesis, regulation, and beyond. |
| [13] |
Quian-Ulloa R, Stange C. 2021. Carotenoid biosynthesis and plastid development in plants: the role of light. |
| [14] |
Henriquez MA, Soliman A, Li G, Hannoufa A, Ayele BT, et al. 2016. Molecular cloning, functional characterization and expression of potato (Solanum tuberosum) 1-deoxy-d-xylulose 5-phosphate synthase 1 (StDXS1) in response to Phytophthora infestans. |
| [15] |
Simpson K, Quiroz LF, Rodriguez-Concepción M, Stange CR. 2016. Differential contribution of the first two enzymes of the MEP pathway to the supply of metabolic precursors for carotenoid and chlorophyll biosynthesis in carrot (Daucus carota). |
| [16] |
Sun T, Li L. 2020. Toward the 'golden' era: the status in uncovering the regulatory control of carotenoid accumulation in plants. |
| [17] |
Sun T, Yuan H, Cao H, Yazdani M, Tadmor Y, et al. 2018. Carotenoid metabolism in plants: the role of plastids. |
| [18] |
Hermanns AS, Zhou X, Xu Q, Tadmor Y, Li L. 2020. Carotenoid pigment accumulation in horticultural plants. |
| [19] |
Jahns P, Holzwarth AR. 2012. The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. |
| [20] |
Neuman H, Galpaz N, Cunningham FX Jr, Zamir D, Hirschberg J. 2014. The tomato mutation nxd1 reveals a gene necessary for neoxanthin biosynthesis and demonstrates that violaxanthin is a sufficient precursor for abscisic acid biosynthesis. |
| [21] |
Nisar N, Li L, Lu S, Khin NC, Pogson BJ. 2015. Carotenoid metabolism in plants. |
| [22] |
Al-Babili S, Bouwmeester HJ. 2015. Strigolactones, a novel carotenoid-derived plant hormone. |
| [23] |
Beltran JCM, Stange C. 2016. Apocarotenoids: a new carotenoid-derived pathway. |
| [24] |
Ohmiya A, Kishimoto S, Aida R, Yoshioka S, Sumitomo K. 2006. Carotenoid cleavage dioxygenase (CmCCD4a) contributes to white color formation in chrysanthemum petals. |
| [25] |
Adami M, De Franceschi P, Brandi F, Liverani A, Giovannini D, et al. 2013. Identifying a carotenoid cleavage dioxygenase (ccd4) gene controlling yellow/white fruit flesh color of peach. |
| [26] |
Zheng X, Zhu K, Sun Q, Zhang W, Wang X, et al. 2019. Natural variation in CCD4 promoter underpins species-specific evolution of red coloration in citrus peel. |
| [27] |
Gao J, Yang S, Tang K, Li G, Gao X, et al. 2021. GmCCD4 controls carotenoid content in soybeans. |
| [28] |
Yuan H, Zhang J, Nageswaran D, Li L. 2015. Carotenoid metabolism and regulation in horticultural crops. |
| [29] |
Schweiggert RM, Steingass CB, Heller A, Esquivel P, Carle R. 2011. Characterization of chromoplasts and carotenoids of red- and yellow-fleshed papaya (Carica papaya L.). |
| [30] |
Jeffery J, Holzenburg A, King S. 2012. Physical barriers to carotenoid bioaccessibility. Ultrastructure survey of chromoplast and cell wall morphology in nine carotenoid-containing fruits and vegetables. |
| [31] |
Simpson K, Cerda A, Stange C. 2016. Carotenoid biosynthesis in Daucus carota. |
| [32] |
Paolillo DJ Jr, Garvin DF, Parthasarathy MV. 2004. The chromoplasts of Or mutants of cauliflower (Brassica oleracea L. var. Botrytis). |
| [33] |
Tzuri G, Zhou X, Chayut N, Yuan H, Portnoy V, et al. 2015. A 'golden' SNP in CmOr governs the fruit flesh color of melon (Cucumis melo). |
| [34] |
Galpaz N, Gonda I, Shem-Tov D, Barad O, Tzuri G, et al. 2018. Deciphering genetic factors that determine melon fruit-quality traits using RNA-Seq-based high-resolution QTL and eQTL mapping. |
| [35] |
Feder A, Chayut N, Gur A, Freiman Z, Tzuri G, et al. 2019. The role of carotenogenic metabolic flux in carotenoid accumulation and chromoplast differentiation: lessons from the melon fruit. |
| [36] |
Chayut N, Yuan H, Ohali S, Meir A, Sa'ar U, et al. 2017. Distinct mechanisms of the ORANGE protein in controlling carotenoid flux. |
| [37] |
Lu S, Zhang Y, Zhu K, Yang W, Ye J, et al. 2018. The citrus transcription factor CsMADS6 modulates carotenoid metabolism by directly regulating carotenogenic genes. |
| [38] |
Xiong C, Luo D, Lin A, Zhang C, Shan L, et al. 2019. A tomato B-box protein SlBBX20 modulates carotenoid biosynthesis by directly activating PHYTOENE SYNTHASE 1, and is targeted for 26S proteasome-mediated degradation. |
| [39] |
Lu S, Ye J, Zhu K, Zhang Y, Zhang M, et al. 2021. A fruit ripening-associated transcription factor CsMADS5 positively regulates carotenoid biosynthesis in citrus. |
| [40] |
Llorente B, D'Andrea L, Ruiz-Sola MA, Botterweg E, Pulido P, et al. 2016. Tomato fruit carotenoid biosynthesis is adjusted to actual ripening progression by a light-dependent mechanism. |
| [41] |
Zhou D, Shen Y, Zhou P, Fatima M, Lin J, et al. 2019. Papaya CpbHLH1/2 regulate carotenoid biosynthesis-related genes during papaya fruit ripening. |
| [42] |
Zhu M, Chen G, Zhou S, Tu Y, Wang Y, et al. 2014. A new tomato NAC (NAM/ATAF1/2/CUC2) transcription factor, SlNAC4, functions as a positive regulator of fruit ripening and carotenoid accumulation. |
| [43] |
Zhu F, Luo T, Liu C, Wang Y, Yang H, et al. 2017. An R2R3-MYB transcription factor represses the transformation of α- and β-branch carotenoids by negatively regulating expression of CrBCH2 and CrNCED5 in flavedo of Citrus reticulate. |
| [44] |
Ampomah-Dwamena C, Thrimawithana AH, Dejnoprat S, Lewis D, Espley RV, et al. 2019. A kiwifruit (Actinidia deliciosa) R2R3-MYB transcription factor modulates chlorophyll and carotenoid accumulation. |
| [45] |
Han Y, Wu M, Cao L, Yuan W, Dong M, et al. 2016. Characterization of OfWRKY3, a transcription factor that positively regulates the carotenoid cleavage dioxygenase gene OfCCD4 in Osmanthus fragrans. |
| [46] |
Yuan Y, Ren S, Liu X, Su L, Wu Y, et al. 2022. SlWRKY35 positively regulates carotenoid biosynthesis by activating the MEP pathway in tomato fruit. |
| [47] |
Wang Z, Zhang S, Yang Y, Li Z, Li H, et al. 2022. Novel bisexual flower control gene regulates sex differentiation in melon (Cucumis melo L.). |
| [48] |
de Oliveira Cavalcanti Medeiros AK, de Carvalho Gomes C, de Araújo Amaral MLQ, de Medeiros LDG, Medeiros I, et al. 2019. Nanoencapsulation improved water solubility and color stability of carotenoids extracted from Cantaloupe melon (Cucumis melo L.). |
| [49] |
Anders S, Pyl PT, Huber W. 2015. HTSeq—a Python framework to work with high-throughput sequencing data. |
| [50] |
Zou H, Zhou L, Han L, Lü J, Wang Y. 2021. Changes of carotenoid components and expression of the related genes during petal coloring of Paeonia delavayi. |
| [51] |
Qin G, Gu H, Ma L, Peng Y, Deng XW, et al. 2007. Disruption of phytoene desaturase gene results in albino and dwarf phenotypes in Arabidopsis by impairing chlorophyll, carotenoid, and gibberellin biosynthesis. |
| [52] |
Rodrigo MJ, Marcos JF, Zacarías L. 2004. Biochemical and molecular analysis of carotenoid biosynthesis in flavedo of orange (Citrus sinensis L.) during fruit development and maturation. |
| [53] |
Cunningham FX Jr, Pogson B, Sun Z, McDonald KA, DellaPenna D, et al. 1996. Functional analysis of the beta and epsilon lycopene cyclase enzymes of Arabidopsis reveals a mechanism for control of cyclic carotenoid formation. |
| [54] |
Harjes CE, Rocheford TR, Bai L, Brutnell TP, Kandianis CB, et al. 2008. Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification. |
| [55] |
Wu M, Lewis J, Moore RC. 2017. A wild origin of the loss-of-function lycopene beta cyclase (CYC-b) allele in cultivated, red-fleshed papaya (Carica papaya). |
| [56] |
Song XY, Zhu WJ, Tang RM, Cai JH, Chen M, et al. 2016. Over-expression of StLCYb increases β-carotene accumulation in potato tubers. |
| [57] |
Ralley L, Schuch W, Fraser PD, Bramley PM. 2016. Genetic modification of tomato with the tobacco lycopene β-cyclase gene produces high β-carotene and lycopene fruit. |
| [58] |
Chayut N, Yuan H, Saar Y, Zheng Y, Sun T, et al. 2021. Comparative transcriptome analyses shed light on carotenoid production and plastid development in melon fruit. |
| [59] |
Wang L, Zhang XL, Wang L, Tian Y, Jia N, et al. 2017. Regulation of ethylene-responsive SlWRKYs involved in color change during tomato fruit ripening. |
| [60] |
Kräutler B, Matile P. 1999. Solving the riddle of chlorophyll breakdown. |
| [61] |
Wu M, Xu X, Hu X, Liu Y, Cao H, et al. 2020. SlMYB72 regulates the metabolism of chlorophylls, carotenoids, and flavonoids in tomato fruit. |
| [62] |
Ma N, Feng H, Meng X, Li D, Yang D, et al. 2014. Overexpression of tomato SlNAC1 transcription factor alters fruit pigmentation and softening. |
| [63] |
Fu CC, Han YC, Fan ZQ, Chen JY, Chen WX, et al. 2016. The papaya transcription factor CpNAC1 modulates carotenoid biosynthesis through activating phytoene desaturase genes CpPDS2/4 during fruit ripening. |