[1]

Liu B, Asseng S, Liu L, Tang L, Cao W, et al. 2016. Testing the responses of four wheat crop models to heat stress at anthesis and grain filling. Global Change Biology 22:1890−903

doi: 10.1111/gcb.13212
[2]

UNESCO World Water Assessment Programme. 2019. Leaving No One Behind. The United Nations World Water Development Report 2019. Paris, France: UNESCO on behalf of UN-Water. https://unesdoc.unesco.org/ark:/48223/pf0000367306_eng

[3]

Shrivastava P, Kumar R. 2015. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi Journal of Biological Sciences 22:123−31

doi: 10.1016/j.sjbs.2014.12.001
[4]

El-Hendawy SE, Hassan WM, Al-Suhaibani NA, Refay Y, Abdella KA. 2017. Comparative performance of multivariable agro-physiological parameters for detecting salt tolerance of wheat cultivars under simulated saline field growing conditions. Frontiers in plant science 8:435

doi: 10.3389/fpls.2017.00435
[5]

Kumar P, Choudhary M, Halder T, Prakash NR, Singh V, et al. 2022. Salinity stress tolerance and omics approaches: revisiting the progress and achievements in major cereal crops. Heredity 128:497−518

doi: 10.1038/s41437-022-00516-2
[6]

Hussein MM, Balbaa LK, Gaballah MS. 2007. Salicylic Acid and Salinity Effects on Growth of Maize Plants. Research Journal of Agriculture and Biological Sciences 3:321−28

[7]

Snowdon RJ, Wittkop B, Chen TW, Stahl A. 2021. Crop adaptation to climate change as a consequence of long-term breeding. Theoretical and Applied Genetics 134:1613−23

doi: 10.1007/s00122-020-03729-3
[8]

Lenaerts B, Collard BCY, Demont M. 2019. Review: Improving global food security through accelerated plant breeding. Plant Science 287:110207

doi: 10.1016/j.plantsci.2019.110207
[9]

Scheben A, Edwards D. 2017. Genome editors take on crops. Science 355:1122−23

doi: 10.1126/science.aal4680
[10]

Fernie AR, Bachem CWB, Helariutta Y, Neuhaus HE, Prat S, et al. 2020. Synchronization of developmental, molecular and metabolic aspects of source-sink interactions. Nature Plants 6:55−66

doi: 10.1038/s41477-020-0590-x
[11]

Yan H, Jin Y, Yu H, Wang C, Wu B, et al. 2024. Genomic selection for agronomical phenotypes using genome-wide SNPs and SVs in pearl millet. Theoretical and Applied Genetics 137:244

doi: 10.1007/s00122-024-04754-2
[12]

Yan H, Sun M, Zhang Z, Jin Y, Zhang A, et al. 2023. Pangenomic analysis identifies structural variation associated with heat tolerance in pearl millet. Nature Genetics 55:507−18

doi: 10.1038/s41588-023-01302-4
[13]

Pucher A, Sy O, Angarawai II, Gondah J, Zangre R, et al. 2015. Agro-morphological characterization of west and central African pearl millet accessions. Crop Science 55:737−48

doi: 10.2135/cropsci2014.06.0450
[14]

Bhattarai B, Singh S, West CP, Ritchie GL, Trostle CL. 2020. Water depletion pattern and water use efficiency of forage sorghum, pearl millet, and corn under water limiting condition. Agricultural Water Management 238:106206

doi: 10.1016/j.agwat.2020.106206
[15]

Hassan K, Abd El-Maaboud M, Draz M, El Shaer H. 2016. Performance of sorghum and pearl millet forage crops productivity by using different agricultural managements under salinity conditions. Journal of Plant Production 7:311−16

doi: 10.21608/jpp.2016.45348
[16]

Sun M, Huang D, Zhang A, Khan I, Yan H, et al. 2020. Transcriptome analysis of heat stress and drought stress in pearl millet based on Pacbio full-length transcriptome sequencing. BMC Plant Biology 20:323

doi: 10.1186/s12870-020-02530-0
[17]

Ashraf M, Hafeez M. 2004. Thermotolerance of pearl millet and maize at early growth stages: growth and nutrient relations. Biologia Plantarum 48:81−86

doi: 10.1023/B:BIOP.0000024279.44013.61
[18]

Jha DK, Chanwala J, Barla P, Dey N. 2024. "Genome-wide identification of bZIP gene family in Pearl millet and transcriptional profiling under abiotic stress, phytohormonal treatments; and functional characterization of PgbZIP9". Frontiers in Plant Science 15:1352040

doi: 10.3389/fpls.2024.1352040
[19]

Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114−20

doi: 10.1093/bioinformatics/btu170
[20]

Bray NL, Pimentel H, Melsted P, Pachter L. 2016. Near-optimal probabilistic RNA-seq quantification. Nature Biotechnology 34:525−27

doi: 10.1038/nbt.3519
[21]

Soneson C, Love MI, Robinson MD. 2015. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Research 4:1521

doi: 10.12688/f1000research.7563.2
[22]

Wang L, Feng Z, Wang X, Wang X, Zhang X. 2010. DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26:136−38

doi: 10.1093/bioinformatics/btp612
[23]

Buchfink B, Xie C, Huson DH. 2015. Fast and sensitive protein alignment using DIAMOND. Nature Methods 12:59−60

doi: 10.1038/nmeth.3176
[24]

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. Journal of Molecular Biology 215:403−10

doi: 10.1016/S0022-2836(05)80360-2
[25]

Finn RD, Clements J, Arndt W, Miller BL, Wheeler TJ, et al. 2015. HMMER web server: 2015 update. Nucleic acids research 43:W30−8

doi: 10.1093/nar/gkv397
[26]

Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, et al. 2005. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674−76

doi: 10.1093/bioinformatics/bti610
[27]

Kanehisa M, Goto S. 2000. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Research 28:27−30

doi: 10.1093/nar/28.1.27
[28]

Zheng Y, Jiao C, Sun H, Rosli HG, Pombo MA, et al. 2016. iTAK: a program for genome-wide prediction and classification of plant transcription factors, transcriptional regulators, and protein kinases. Molecular Plant 9:1667−70

doi: 10.1016/j.molp.2016.09.014
[29]

Young MD, Wakefield MJ, Smyth GK, Oshlack A. 2010. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome biology 11:R14

doi: 10.1186/gb-2010-11-2-r14
[30]

Bu D, Luo H, Huo P, Wang Z, Zhang S, et al. 2021. KOBAS-i: intelligent prioritization and exploratory visualization of biological functions for gene enrichment analysis. Nucleic Acids Research 49:W317−W325

doi: 10.1093/nar/gkab447
[31]

Huang D, Sun M, Zhang A, Chen J, Zhang J, et al. 2021. Transcriptional changes in pearl millet leaves under heat stress. Genes 12:1716

doi: 10.3390/genes12111716
[32]

Li B, Gao Z, Liu X, Sun D, Tang W. 2019. Transcriptional profiling reveals a time-of-day-specific role of REVEILLE 4/8 in regulating the first wave of heat shock-induced gene expression in arabidopsis. The Plant cell 31:2353−69

doi: 10.1105/tpc.19.00519
[33]

Dahuja A, Kumar RR, Sakhare A, Watts A, Singh B, et al. 2021. Role of ATP-binding cassette transporters in maintaining plant homeostasis under abiotic and biotic stresses. Physiologia Plantarum 171:785−801

doi: 10.1111/ppl.13302
[34]

Kavi Kishor PB, Tiozon RN, Fernie AR, Sreenivasulu N. 2022. Abscisic acid and its role in the modulation of plant growth, development, and yield stability. Trends in Plant Science 27:1283−95

doi: 10.1016/j.tplants.2022.08.013
[35]

Pantin F, Monnet F, Jannaud D, Costa JM, Renaud J, et al. 2013. The dual effect of abscisic acid on stomata. The New Phytologist 197:65−72

doi: 10.1111/nph.12013
[36]

Chen K, Li GJ, Bressan RA, Song CP, Zhu JK, et al. 2020. Abscisic acid dynamics, signaling, and functions in plants. Journal of Integrative Plant Biology 62:25−54

doi: 10.1111/jipb.12899
[37]

Audran C, Liotenberg S, Gonneau M, North H, Frey A, et al. 2001. Localisation and expression of zeaxanthin epoxidase mRNA in Arabidopsis in response to drought stress and during seed development. Functional Plant Biol 28:1161

doi: 10.1071/PP00134
[38]

Muhammad Aslam M, Waseem M, Jakada BH, Okal EJ, Lei Z, et al. 2022. Mechanisms of abscisic acid-mediated drought stress responses in plants. International Journal Of Molecular Sciences 23:1084

doi: 10.3390/ijms23031084
[39]

González-Guzmán M, Apostolova N, Bellés JM, Barrero JM, Piqueras P, et al. 2002. The short-chain alcohol dehydrogenase ABA2 catalyzes the conversion of xanthoxin to abscisic aldehyde. The Plant Cell 14:1833−46

doi: 10.1105/tpc.002477
[40]

Manna M, Thakur T, Chirom O, Mandlik R, Deshmukh R, et al. 2021. Transcription factors as key molecular target to strengthen the drought stress tolerance in plants. Physiologia Plantarum 172:847−68

doi: 10.1111/ppl.13268
[41]

Heilmann M, Heilmann I. 2022. Regulators regulated: different layers of control for plasma membrane phosphoinositides in plants. Current Opinion in Plant Biology 67:102218

doi: 10.1016/j.pbi.2022.102218
[42]

Park D, Jeong S, Lee S, Park S, Kim JI, et al. 2000. Molecular characterization of Drosophila melanogaster myo-inositol-1-phosphate synthase. Biochimica et biophysica acta 1494:277−281

doi: 10.1016/s0167-4781(00)00085-3
[43]

McAllister G, Whiting P, Hammond EA, Knowles MR, Atack JR, et al. 1992. cDNA cloning of human and rat brain myo-inositol monophosphatase. Expression and characterization of the human recombinant enzyme. The Biochemical Journal 284:749−54

doi: 10.1042/bj2840749
[44]

Munnik T, Vermeer JEM. 2010. Osmotic stress-induced phosphoinositide and inositol phosphate signalling in plants. Plant, Cell & Environment 33:655−69

doi: 10.1111/j.1365-3040.2009.02097.x
[45]

Sbrissa D, Ikonomov OC, Deeb R, Shisheva A. 2002. Phosphatidylinositol 5-phosphate biosynthesis is linked to PIKfyve and is involved in osmotic response pathway in mammalian cells. The Journal of Biological Chemistry 277:47276−84

doi: 10.1074/jbc.M207576200
[46]

Castañeda-Álvarez NP, Khoury CK, Achicanoy HA, Bernau V, Dempewolf H, et al. 2016. Global conservation priorities for crop wild relatives. Nature Plants 2:16022

doi: 10.1038/nplants.2016.22
[47]

Oshunsanya SO, Nwosu NJ, Li Y. 2019. Abiotic stress in agricultural crops under climatic conditions. In Sustainable Agriculture, Forest and Environmental Management, eds. Jhariya MK, Banerjee A, Meena RS, Yadav DK. Singapore: Springer. pp. 71–100. doi: 10.1007/978-981-13-6830-1_3

[48]

Philippe G, Sørensen I, Jiao C, Sun X, Fei Z, et al. 2020. Cutin and suberin: assembly and origins of specialized lipidic cell wall scaffolds. Current Opinion in Plant Biology 55:11−20

doi: 10.1016/j.pbi.2020.01.008
[49]

Bhanot V, Fadanavis SV, Panwar J. 2021. Revisiting the architecture, biosynthesis and functional aspects of the plant cuticle: There is more scope. Environmental and Experimental Botany 183:104364

doi: 10.1016/j.envexpbot.2020.104364
[50]

Benítez JJ, González Moreno A, Guzmán-Puyol S, Heredia-Guerrero JA, Heredia A, et al. 2021. The response of tomato fruit cuticle membranes against heat and light. Frontiers in Plant Science 12:807723

doi: 10.3389/fpls.2021.807723
[51]

Höfer R, Briesen I, Beck M, Pinot F, Schreiber L, et al. 2008. The Arabidopsis cytochrome P450 CYP86A1 encodes a fatty acid ω-hydroxylase involved in suberin monomer biosynthesis. Journal of Experimental Botany 59:2347−60

doi: 10.1093/jxb/ern101
[52]

Krolikowski KA, Victor JL, Wagler TN, Lolle SJ, Pruitt RE. 2003. Isolation and characterization of the Arabidopsis organ fusion gene HOTHEAD. The Plant Journal 35:501−11

doi: 10.1046/j.1365-313X.2003.01824.x
[53]

Moore CE, Meacham-Hensold K, Lemonnier P, Slattery RA, Benjamin C, et al. 2021. The effect of increasing temperature on crop photosynthesis: from enzymes to ecosystems. Journal of Experimental Botany 72:2822−44

doi: 10.1093/jxb/erab090
[54]

Higgins CF. 1992. ABC transporters: from microorganisms to man. Annual Review of Cell Biology 8:67−113

doi: 10.1146/annurev.cb.08.110192.000435
[55]

Kuromori T, Miyaji T, Yabuuchi H, Shimizu H, Sugimoto E, et al. 2010. ABC transporter AtABCG25 is involved in abscisic acid transport and responses. Proceedings of the National Academy of Sciences of the United States of America 107:2361−66

doi: 10.1073/pnas.0912516107
[56]

Takahashi S, Badger MR. 2011. Photoprotection in plants: a new light on photosystem II damage. Trends in Plant Science 16:53−60

doi: 10.1016/j.tplants.2010.10.001
[57]

Jia W, Zhang J. 2008. Stomatal movements and long-distance signaling in plants. Plant Signaling & Behavior 3:772−77

doi: 10.4161/psb.3.10.6294
[58]

Pei ZM, Murata Y, Benning G, Thomine S, Klüsener B, et al. 2000. Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406:731−34

doi: 10.1038/35021067
[59]

Ohama N, Sato H, Shinozaki K, Yamaguchi-Shinozaki K. 2017. Transcriptional regulatory network of plant heat stress response. Trends in Plant Science 22:53−65

doi: 10.1016/j.tplants.2016.08.015
[60]

Wi SJ, Ji NR, Park KY. 2012. Synergistic biosynthesis of biphasic ethylene and reactive oxygen species in response to hemibiotrophic Phytophthora parasitica in tobacco plants. Plant Physiology 159:251−65

doi: 10.1104/pp.112.194654
[61]

Gong L, Liu XD, Zeng YY, Tian XQ, Li YL, et al. 2021. Stomatal morphology and physiology explain varied sensitivity to abscisic acid across vascular plant lineages. Plant Physiology 186:782−97

doi: 10.1093/plphys/kiab090
[62]

Mittler R, Vanderauwera S, Gollery M, van Breusegem F. 2004. Reactive oxygen gene network of plants. Trends in Plant Science 9:490−98

doi: 10.1016/j.tplants.2004.08.009
[63]

Han X, Yang Y. 2021. Phospholipids in salt stress response. Plants 10:2204

doi: 10.3390/plants10102204
[64]

Yang Y, Han X, Ma L, Wu Y, Liu X, et al. 2021. Dynamic changes of phosphatidylinositol and phosphatidylinositol 4-phosphate levels modulate H+-ATPase and Na+/H+ antiporter activities to maintain ion homeostasis in Arabidopsis under salt stress. Molecular Plant 14:2000−14

doi: 10.1016/j.molp.2021.07.020
[65]

Malinsky J, Opekarová M, Grossmann G, Tanner W. 2013. Membrane microdomains, rafts, and detergent-resistant membranes in plants and fungi. Annual Review of Plant Biology 64:501−29

doi: 10.1146/annurev-arplant-050312-120103
[66]

Xing J, Zhang L, Duan Z, Lin J. 2021. Coordination of Phospholipid-Based Signaling and Membrane Trafficking in Plant Immunity. Trends in plant science 26:407−420

doi: 10.1016/j.tplants.2020.11.010
[67]

Aniento F, Sánchez de Medina Hernández V, Dagdas Y, Rojas-Pierce M, Russinova E. 2022. Molecular mechanisms of endomembrane trafficking in plants. The Plant Cell 34:146−73

doi: 10.1093/plcell/koab235
[68]

Mosesso N, Nagel MK, Isono E. 2019. Ubiquitin recognition in endocytic trafficking - with or without ESCRT-0. Journal of Cell Science 132:jcs232868

doi: 10.1242/jcs.232868
[69]

Thomas C, Tampé R. 2020. Structural and mechanistic principles of ABC transporters. Annual Review of Biochemistry 89:605−36

doi: 10.1146/annurev-biochem-011520-105201
[70]

Lee M, Choi Y, Burla B, Kim YY, Jeon B, et al. 2008. The ABC transporter AtABCB14 is a malate importer and modulates stomatal response to CO2. Nature Cell Biology 10:1217−23

doi: 10.1038/ncb1782
[71]

Zhou Y, Wang Y, Zhang D, Liang J. 2024. Endomembrane-biased dimerization of ABCG16 and ABCG25 transporters determines their substrate selectivity in ABA-regulated plant growth and stress responses. Molecular Plant 17:478−95

doi: 10.1016/j.molp.2024.02.005
[72]

Kim DY, Jin JY, Alejandro S, Martinoia E, Lee Y. 2010. Overexpression of AtABCG36 improves drought and salt stress resistance in Arabidopsis. Physiologia Plantarum 139:170−80

doi: 10.1111/j.1399-3054.2010.01353.x
[73]

Shinde H, Tanaka K, Dudhate A, Tsugama D, Mine Y, et al. 2018. Comparative de novo transcriptomic profiling of the salinity stress responsiveness in contrasting pearl millet lines. Environmental and Experimental Botany 155:619−27

doi: 10.1016/j.envexpbot.2018.07.008
[74]

Shinozaki K, Yamaguchi-Shinozaki K. 1997. Gene expression and signal transduction in water-stress response. Plant Physiology 115:327−34

doi: 10.1104/pp.115.2.327
[75]

Haider S, Iqbal J, Naseer S, Yaseen T, Shaukat M, et al. 2021. Molecular mechanisms of plant tolerance to heat stress: current landscape and future perspectives. Plant Cell Reports 40:2247−71

doi: 10.1007/s00299-021-02696-3
[76]

Clough SJ, Fengler KA, Yu IC, Lippok B, Smith RK Jr., et al. 2000. The Arabidopsis dnd1 "defense, no death" gene encodes a mutated cyclic nucleotide-gated ion channel. Proceedings of the National Academy of Sciences of the United States of America 97:9323−28

doi: 10.1073/pnas.150005697
[77]

Jeong S, Lim CW, Kim M, Lee SC. 2024. Modulation of phosphorylation status of MAP3 kinases under abiotic stress responses. Physiologia Plantarum 176:e14146

doi: 10.1111/ppl.14146
[78]

Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR. 2010. Abscisic acid: emergence of a core signaling network. Annual Review of Plant Biology 61:651−79

doi: 10.1146/annurev-arplant-042809-112122
[79]

Singh VP, Jaiswal S, Wang Y, Feng S, Tripathi DK, et al. 2024. Evolution of reactive oxygen species cellular targets for plant development. Trends in Plant Science 29:865−77

doi: 10.1016/j.tplants.2024.03.005