[1]

Xu J, Zhang W, Zhu L, Jiang H, Sun T, et al. 2024. Phenotypic diversity analysis of fruit traits of 78 North American crabapple cultivars. Journal of Nanjing Forestry University (Natural Sciences Edition) 00:1−12

[2]

Höfer M, Ali Mohamed Saad Eldin Ali M, Sellmann J, Peil A. 2014. Phenotypic evaluation and characterization of a collection of Malus species. Genetic Resources and Crop Evolution 61:943−64

doi: 10.1007/s10722-014-0088-3
[3]

Wu X, Liu F, Fang Y, Jiang N, Jiang L, et al. 2015. A comprehensive evaluation on application value of 36 Euro-American ornamental crabapples. Journal of Nanjing Forestry University (Natural Sciences Edition) 39:93−98

doi: 10.3969/j.issn.1000-2006.2015.01.001
[4]

Liu S, Peng J, Wang R, Wang H, Li Y, et al. 2022. Phenotypic diversity analysis and comprehensive appreciation evaluation of 30 North American crabapples. Molecular Plant Breeding 00:1−11

[5]

Zhou X, Wang X, Wei H, Zhang H, Wu Q, et al. 2024. Integrative analysis of transcriptome and target metabolites uncovering flavonoid biosynthesis regulation of changing petal colors in Nymphaea 'Feitian 2'. BMC Plant Biology 24:370−70

doi: 10.1186/s12870-024-05078-5
[6]

Seto H, Sasaki S, Mitobe Y, Ota T, Tatsuzawa F. 2023. Flower colors and flavonoids in the cultivars of Verbena hybrida. The Horticulture Journal 92:323−34

doi: 10.2503/hortj.QH-032
[7]

Wu Q, Li PC, Zhang HJ, Feng CY, Li SS, et al. 2018. Relationship between the flavonoid composition and flower colour variation in Victoria. Plant Biology 20:674−81

doi: 10.1111/plb.12835
[8]

Shi J, Simal-Gandara J, Mei J, Ma W, Peng Q, et al. 2021. Insight into the pigmented anthocyanins and the major potential co-pigmented flavonoids in purple-coloured leaf teas. Food Chemistry 363:130278

doi: 10.1016/j.foodchem.2021.130278
[9]

Koes R, Verweij W, Quattrocchio F. 2005. Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends in Plant Science 10:236−42

doi: 10.1016/j.tplants.2005.03.002
[10]

Nishihara M, Nakatsuka T. 2011. Genetic engineering of flavonoid pigments to modify flower color in floricultural plants. Biotechnology Letters 33:433−41

doi: 10.1007/s10529-010-0461-z
[11]

Guo P, Huang Z, Zhao W, Lin N, Wang Y, et al. 2023. Mechanisms for leaf color changes in Osmanthus fragrans 'Ziyan Gongzhu' using physiology, transcriptomics and metabolomics. BMC Plant Biology 23:453

doi: 10.1186/s12870-023-04457-8
[12]

Guo X, Fu X, Li X, Tang D. 2022. Effect of flavonoid dynamic changes on flower coloration of Tulipa gesneiana 'Queen of Night' during flower development. Horticulturae 8:510

doi: 10.3390/horticulturae8060510
[13]

Wei F, Wan R, Shi Z, Ma W, Wang H, et al. 2023. Transcriptomics and metabolomics reveal the critical genes of carotenoid biosynthesis and color formation of Goji (Lycium barbarum L.) fruit ripening. Plants 12:2791

doi: 10.3390/plants12152791
[14]

Zeng H, Zheng T, Li Y, Chen Q, Xue Y, et al. 2023. Characterization variation of the differential coloring substances in rapeseed petals with different colors using UPLC-HESI-MS/MS. Molecules 28:5670

doi: 10.3390/molecules28155670
[15]

Yuan M, Ma Y, Wu R, Kang X, Ding C, et al. 2024. Physicochemical characteristics and anthocyanin components affecting the color of rose petal. Acta Botanica Boreali-Occidentalia Sinica 44:255−69

doi: 10.7606/j.issn.1000-4025.20230582
[16]

Li X, Li Y, Zhao M, Hu Y, Meng F, et al. 2021. Molecular and metabolic insights into anthocyanin biosynthesis for leaf color change in chokecherry (Padus virginiana). International Journal of Molecular Sciences 22:10697

doi: 10.3390/ijms221910697
[17]

Palapol Y, Ketsa S, Stevenson D, Cooney JM, Allan AC, et al. 2009. Colour development and quality of mangosteen (Garcinia mangostana L.) fruit during ripening and after harvest. Postharvest Biology and Technology 51:349−53

doi: 10.1016/j.postharvbio.2008.08.003
[18]

Peng Z, Zhong C, Wang B, Li W, Zhou J, et al. 2023. Analysis of anthocyanin accumulation and gene expression of anthocyanin synthesis pathway during fruit ripening of 'Benihoppe' strawberry. Science and Technology of Food Industry 44:346−54

doi: 10.13386/j.issn1002-0306.2022090106
[19]

Xiao CJ, Zhang Y, Qiu L, Dong X, Jiang B. 2014. Schistosomicidal and antioxidant flavonoids from Astragalus englerianus. Planta Medica 80:1727−31

doi: 10.1055/s-0034-1383219
[20]

Ibrahim RM, Mhawish AA, Abbud KW. 2018. Estimation of the whole flavonoid, antioxidant, anti bacterial challenge concerning viola odorata (Banafsha) methanolic extract. Iraqi Journal of Agricultural Science 49:655−62

doi: 10.36103/ijas.v49i4.75
[21]

Quintal Martínez JP, Segura Campos MR. 2023. Flavonoids as a therapeutical option for the treatment of thrombotic complications associated with COVID-19. Phytotherapy Research 37:1092−114

doi: 10.1002/ptr.7700
[22]

Santana FPR, Thevenard F, Gomes KS, Taguchi L, Câmara NOS, et al. 2021. New perspectives on natural flavonoids on COVID-19-induced lung injuries. Phytotherapy Research 35:4988−5006

doi: 10.1002/ptr.7131
[23]

Ferreira A, Pousinho S, Fortuna A, Falcão A, Alves G. 2015. Flavonoid compounds as reversal agents of the P-glycoprotein-mediated multidrug resistance: biology, chemistry and pharmacology. Phytochemistry Reviews 14:233−72

doi: 10.1007/s11101-014-9358-0
[24]

Han M, Zhao Y, Meng J, Yin J, Li H. 2023. Analysis of physicochemical and antioxidant properties of Malus spp. petals reveals factors involved in flower color change and market value. Scientia Horticulturae 310:111688

doi: 10.1016/j.scienta.2022.111688
[25]

Walibai T, Li H, Li G, Liu T, Li Y, et al. 2017. Pigment analysis on different colors of leaves from Malus sieboldii. Guihaia 37:1572−78

doi: 10.11931/guihaia.gxzw201703039
[26]

Tao H, Sun H, Wang Y, Song X, Guo Y. 2020. New insights on 'GALA' apple fruit development: sugar and acid accumulation: a transcriptomic approach. Journal of Plant Growth Regulation 39:680−702

doi: 10.1007/s00344-019-10010-5
[27]

Ribeiro C, Xu J, Teper D, Lee D, Wang N. 2021. The transcriptome landscapes of citrus leaf in different developmental stages. Plant Molecular Biology 106:349−66

doi: 10.1007/s11103-021-01154-8
[28]

Li YY, Mao K, Zhao C, Zhao XY, Zhang HL, et al. 2012. MdCOP1 ubiquitin E3 ligases interact with MdMYB1 to regulate light-induced anthocyanin biosynthesis and red fruit coloration in apple. Plant Physiology 160:1011−22

doi: 10.1104/pp.112.199703
[29]

Li N, Shi J, Wang K. 2014. Profile and antioxidant activity of phenolic extracts from 10 crabapples (Malus wild species). Journal of Agricultural and Food Chemistry 62:574−81

doi: 10.1021/jf404542d
[30]

Wolfe K, Wu X, Liu RH. 2003. Antioxidant activity of apple peels. Journal of Agricultural and Food Chemistry 51:609−14

doi: 10.1021/jf020782a
[31]

Wang H, Kong Y, Dou X, Lang L, Bai J. 2021. Analysis of flower color formation in different types of bicolor lilies. Acta Botanica Boreali-Occidentalia Sinica 41:606−14

doi: 10.7606/j.issn.1000-4025.2021.04.0606
[32]

Li Z, Wang D, Zhang Y, Zhao R, Wang L, et al. 2022. Composition and influencing factors of anthocyanins of Hibiscus syriacus. Plant Physiology Journal 58:2364−78

doi: 10.13592/j.cnki.ppj.100154
[33]

Xie Y, He Y, Zhou N, Yan Y, Huang Y. 2023. Study on the physiological and biochemical characteristics of Chimonanthus praecox (L.) Link 'Meirenzui' petals during flowering. Acta Botanica Boreali-Occidentalia Sinica 43:611−17

doi: 10.7606/j.issn.1000-4025.2023.04.0611
[34]

Chu A, Zhang Y, Tian Y. 2012. Physiological changes of leaves of several fall color trees during color changing period in autumn and winter. Journal of Northeast Forestry University 40:40−43

doi: 10.3969/j.issn.1000-5382.2012.11.011
[35]

Liao T, Fu L, Guo L, Liu G, Wang Y, et al. 2021. Pigment change and photosynthetic response characteristics of Plantycladus orientalis cv. Semperourescens. Chinese Agricultural Science Bulletin 37:56−63

[36]

Charoenchongsuk N, Ikeda K, Itai A, Oikawa A, Murayama H. 2015. Comparison of the expression of chlorophyll-degradation-related genes during ripening between stay-green and yellow-pear cultivars. Scientia Horticulturae 181:89−94

doi: 10.1016/j.scienta.2014.10.005
[37]

Rungpichayapichet P, Mahayothee B, Khuwijitjaru P, Nagle M, Müller J. 2015. Non-destructive determination of β-carotene content in mango by near-infrared spectroscopy compared with colorimetric measurements. Journal of Food Composition and Analysis 38:32−41

doi: 10.1016/j.jfca.2014.10.013
[38]

Wei X, Chen C, Yu Q, Gady A, Yu Y, et al. 2014. Novel expression patterns of carotenoid pathway-related genes in citrus leaves and maturing fruits. Tree Genetics & Genomes 10:439−48

doi: 10.1007/s11295-013-0688-7
[39]

Honda C, Kotoda N, Wada M, Kondo S, Kobayashi S, et al. 2002. Anthocyanin biosynthetic genes are coordinately expressed during red coloration in apple skin. Plant Physiology and Biochemistry 40:955−62

doi: 10.1016/S0981-9428(02)01454-7
[40]

Ortega-Regules A, Romero-Cascales I, López-Roca JM, Ros-García JM, Gómez-Plaza E. 2006. Anthocyanin fingerprint of grapes: environmental and genetic variations. Journal of the Science of Food and Agriculture 86:1460−67

doi: 10.1002/jsfa.2511
[41]

Zhao X, Yuan Z, Fang Y, Yin Y, Feng L. 2013. Characterization and evaluation of major anthocyanins in pomegranate (Punica granatum L.) peel of different cultivars and their development phases. European Food Research & Technology 236:109−17

doi: 10.1007/s00217-012-1869-6
[42]

Han M, Yang C, Zhou J, Zhu J, Meng J, et al. 2020. Analysis of flavonoids and anthocyanin biosynthesis-related genes expression reveals the mechanism of petal color fading of Malus hupehensis (Rosaceae). Brazilian Journal of Botany 43:81−89

doi: 10.1007/s40415-020-00590-y
[43]

Xue L, Wang J, Zhao J, Zheng Y, Wang HF, et al. 2019. Study on cyanidin metabolism in petals of pink-flowered strawberry based on transcriptome sequencing and metabolite analysis. BMC Plant Biology 19:423

doi: 10.1186/s12870-019-2048-8
[44]

Yi OS, Meyer AS, Frankel EN, Federation Internationale de Laiterie B. 1997. Antioxidant activity of grape extracts in a lecithin liposome system. Journal of the American Oil Chemists' Society 74:1301−7

doi: 10.1007/s11746-997-0061-9
[45]

Bouillon P, Fanciullino AL, Belin E, Bréard D, Boisard S, et al. 2024. Image analysis and polyphenol profiling unveil red-flesh apple phenotype complexity. Plant Methods 20:71

doi: 10.1186/s13007-024-01196-1
[46]

Zhao T, Yu Q, Lin C, Liu H, Dong L, et al. 2023. Analyzing morphology, metabolomics, and transcriptomics offers invaluable insights into the mechanisms of pigment accumulation in the diverse-colored labellum tissues of Alpinia. Plants 12:3766

doi: 10.3390/plants12213766
[47]

Zhang XY, Yi K, Chen J, Li RP, Xie J, et al. 2018. Purified phlorizin from DocynIa Indica (Wall.) decne by HSCCC, compared with whole extract, phlorizin and non-phlorizin fragment ameliorate obesity, insulin resistance, and improves intestinal barrier function in High-Fat-Diet-Fed mice. Molecules 23:2701

doi: 10.3390/molecules23102701
[48]

Cai Q, Li B, Yu F, Lu W, Zhang Z, et al. 2013. Investigation of the protective effects of phlorizin on diabetic cardiomyopathy in db/db mice by quantitative proteomics. Journal of Diabetes Research 2013:263845

doi: 10.1155/2013/263845
[49]

Cardoso-Sousa L, Aguiar EMG, Caixeta DC, Vilela DD, da Costa DP, et al. 2019. Effects of salbutamol and phlorizin on acute pulmonary inflammation and disease severity in experimental sepsis. PLoS One 14:e0222575

doi: 10.1371/journal.pone.0222575
[50]

Tian L, Su CP, Wang Q, Wu FJ, Bai R, et al. 2019. Chlorogenic acid: a potent molecule that protects cardiomyocytes from TNF-α-induced injury via inhibiting NF-κB and JNK signals. Journal of Cellular and Molecular Medicine 23:4666−78

doi: 10.1111/jcmm.14351
[51]

Wan H, Yu C, Luo L, Han Y, Pan H, et al. 2019. Extraction and determination of flavonoids and carotenoids in petals of Roses (Rosa spp.). Molecular Plant Breeding 17:6800−11

doi: 10.13271/j.mpb.017.006800
[52]

Zhang S, Lu B, Han X, Xu L, Qi Y, et al. 2013. Protection of the flavonoid fraction from Rosa laevigata Michx fruit against carbon tetrachloride-induced acute liver injury in mice. Food and Chemical Toxicology 55:60−69

doi: 10.1016/j.fct.2012.12.041
[53]

Wang CM, Zeng HB. 2017. Effect of quercetin on lipid peroxides and antioxidant enzymes after exhaustive exercise. Genomics and Applied Biology 36:3985−91

[54]

Sunil C, Xu B. 2019. An insight into the health-promoting effects of taxifolin (dihydroquercetin). Phytochemistry 166:112066

doi: 10.1016/j.phytochem.2019.112066