[1]

Li MY, Hou XL, Wang F, Tan GF, Xu ZS, et al. 2018. Advances in the research of celery, an important Apiaceae vegetable crop. Critical Reviews in Biotechnology 38:172−83

doi: 10.1080/07388551.2017.1312275
[2]

Li MY, Feng K, Hou XL, Jiang Q, Xu ZS, et al. 2020. The genome sequence of celery (Apium graveolens L.), an important leaf vegetable crop rich in apigenin in the Apiaceae family. Horticulture Research 7:9

doi: 10.1038/s41438-019-0235-2
[3]

Wang Y, Chen X, Li X, Song Y, Wang J, et al. 2021. Exogenous application of 5-aminolevulinic acid alleviated damage to wheat chloroplast ultrastructure under drought stress by transcriptionally regulating genes correlated with photosynthesis and chlorophyll biosynthesis. Acta Physiologiae Plantarum 44:12

doi: 10.1007/s11738-021-03347-6
[4]

Wang T, Liu S, Tian S, Ma T, Wang W. 2022. Light regulates chlorophyll biosynthesis via ELIP1 during the storage of Chinese cabbage. Scientific Reports 12:11098

doi: 10.1038/s41598-022-15451-9
[5]

Wang C, Ma W, Xu L, Wei Z, Tang K, et al. 2024. Integrative metabolic and cellular organelle engineering for improving biosynthesis of flavonoid compounds in saccharomyces cerevisiae. Food Bioscience 60:103996

doi: 10.1016/j.fbio.2024.103996
[6]

An Z, Yang Z, Zhou Y, Huo S, Zhang S, et al. 2024. OsJRL negatively regulates rice cold tolerance via interfering phenylalanine metabolism and flavonoid biosynthesis. Plant, Cell & Environment 6:4071−85

doi: 10.1111/pce.15005
[7]

Vale AP, Santos J, Brito NV, Peixoto V, Carvalho R, et al. 2015. Light influence in the nutritional composition of Brassica oleracea sprouts. Food Chemistry 178:292−300

doi: 10.1016/j.foodchem.2015.01.064
[8]

Adjei MO, Zhou X, Xue Y, Mao M, Zhang H, et al. 2022. Comparative chlorophyll metabolic genes expression and response to dark stress of Ananas comosus var. bracteatus. The Journal of Horticultural Science and Biotechnology 97:456−65

doi: 10.1080/14620316.2021.2023664
[9]

Liang M, Gu D, Lie Z, Yang Y, Lu L, et al. 2023. Regulation of chlorophyll biosynthesis by light-dependent acetylation of NADPH: protochlorophyll oxidoreductase A in Arabidopsis. Plant Science 330:111641

doi: 10.1016/j.plantsci.2023.111641
[10]

Qin Y, Liu X, Li C, Chu Q, Cheng S, et al. 2024. Effect of light intensity on celery growth and flavonoid synthesis. Frontiers in Plant Science 14:1326218

doi: 10.3389/fpls.2023.1326218
[11]

Khan M, Taufiq S, Nauman I, Noor N, Iqbal T, et al. 2022. Photoperiod and water-deficient conditions differentially regulate structural flavonoid biosynthetic genes in peanuts. Journal of Plant Interactions 17:620−31

doi: 10.1080/17429145.2022.2076940
[12]

Fadda A, Virdis A, Barberis A, Ledda L, Melito S. 2020. Phenolic compounds, antioxidant activity and lignin content of 'Spinoso sardo' globe artichoke grown under different photoperiods. Acta Horticulturae 1284:249−54

doi: 10.17660/actahortic.2020.1284.33
[13]

Huang T, Liu H, Tao JP, Zhang JQ, Zhao TM, et al. 2023. Low light intensity elongates period and defers peak time of photosynthesis: a computational approach to circadian-clock-controlled photosynthesis in tomato. Horticulture Research 10:uhad077

doi: 10.1093/hr/uhad077
[14]

Sharma M, Irfan M, Kumar A, Kumar P, Datta A. 2022. Recent insights into plant circadian clock response against abiotic stress. Journal of Plant Growth Regulation 41:3530−43

doi: 10.1007/s00344-021-10531-y
[15]

Ren Y, Gao Y, Zhang Q. 2021. Morning and evening alarm of the circadian clock for flower opening times in Hemerocallis. Plant Science 311:110992

doi: 10.1016/j.plantsci.2021.110992
[16]

Ohno M, Yamawo A. 2021. Night interruption provides evidence for photoperiodic regulation of bud burst in Japanese beech, Fagus crenata. Plant Signaling & Behavior 16:1982562

doi: 10.1080/15592324.2021.1982562
[17]

Li M, Tan S, Tan G, Luo Y, Sun B, et al. 2020. Transcriptome analysis reveals important transcription factor families and reproductive biological processes of flower development in celery (Apium graveolens L.). Agronomy 10:653

doi: 10.3390/agronomy10050653
[18]

Melloni MGL, Melloni MGN, Scarpari MS, Garcia JC, Landell MGA, et al. 2015. Flowering of sugarcane genotypes under different artificial photoperiod conditions. American Journal of Plant Sciences 6:456−63

doi: 10.4236/ajps.2015.63051
[19]

Wang ZH, Liu X, Cui Y, Wang YH, Lv ZL, et al. 2024. Genomic, transcriptomic, and metabolomic analyses provide insights into the evolution and development of a medicinal plant Saposhnikovia divaricata (Apiaceae). Horticulture Research 11:uhae105

doi: 10.1093/hr/uhae105
[20]

Chen S, Zhou Y, Chen Y, Gu J. 2018. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34:i884−i890

doi: 10.1093/bioinformatics/bty560
[21]

Davis EM, Sun Y, Liu Y, Kolekar P, Shao Y, et al. 2021. SequencErr: measuring and suppressing sequencer errors in next-generation sequencing data. Genome Biology 22:37

doi: 10.1186/s13059-020-02254-2
[22]

Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, et al. 2013. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15−21

doi: 10.1093/bioinformatics/bts635
[23]

Li B, Dewey CN. 2011. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12:323

doi: 10.1186/1471-2105-12-323
[24]

Liao Y, Smyth GK, Shi W. 2013. The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote. Nucleic Acids Research 41:e108

doi: 10.1093/nar/gkt214
[25]

Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, et al. 2000. Gene Ontology: tool for the unification of biology. Nature Genetics 25:25−29

doi: 10.1038/75556
[26]

Yu G, Wang LG, Han Y, He QY. 2012. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16:284−87

doi: 10.1089/omi.2011.0118
[27]

Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M. 2004. The KEGG resource for deciphering the genome. Nucleic Acids Research 32:D277−D280

doi: 10.1093/nar/gkh063
[28]

Wang H, Liu JX, Feng K, Li T, Duan AQ, et al. 2022. AgMYB12, a novel R2R3-MYB transcription factor, regulates apigenin biosynthesis by interacting with the AgFNS gene in celery. Plant Cell Reports 41:139−51

doi: 10.1007/s00299-021-02792-4
[29]

Schäffer AA, Aravind L, Madden TL, Shavirin S, Spouge JL, et al. 2001. Improving the accuracy of PSI-BLAST protein database searches with composition-based statistics and other refinements. Nucleic Acids Research 29:2994−3005

doi: 10.1093/nar/29.14.2994
[30]

Deng YY, Li JQ, Wu SF, Zhu YP, Chen YW, et al. 2006. Integrated nr database in protein annotation system and its localization. Computer Engineering 32:71−73,76

[31]

Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, et al. 2014. Pfam: the protein families database. Nucleic Acids Research 42:D222−D230

doi: 10.1093/nar/gkt1223
[32]

Apweiler R, Bairoch A, Wu CH, Barker WC, Boeckmann B, et al. 2004. UniProt: the universal protein knowledgebase. Nucleic Acids Research 32:D115−D119

doi: 10.1093/nar/gkh131
[33]

Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, et al. 2003. The COG database: an updated version includes eukaryotes. BMC Bioinformatics 4:41

doi: 10.1186/1471-2105-4-41
[34]

Fang J, Shugart HH, Wang L, Lutz JA, Yan X, et al. 2024. Optimal representation of spring phenology on photosynthetic productivity across the Northern Hemisphere forests. Agricultural and Forest Meteorology 350:109975

doi: 10.1016/j.agrformet.2024.109975
[35]

Yudina L, Sukhova E, Gromova E, Mudrilov M, Zolin Y, et al. 2023. Effect of duration of LED lighting on growth, photosynthesis and respiration in lettuce. Plants 12:442

doi: 10.3390/plants12030442
[36]

Ren H, Zhu F, Zheng C, Sun X, Wang W, et al. 2013. Transcriptome analysis reveals genes related to floral development in chrysanthemum responsive to photoperiods. Biochemical Genetics 51:20−32

doi: 10.1007/s10528-012-9541-1
[37]

Mu W, Wu X, Camarero JJ, Fu YH, Huang J, et al. 2023. Photoperiod drives cessation of wood formation in northern conifers. Global Ecology and Biogeography 32:603−17

doi: 10.1111/geb.13647
[38]

Sønsteby A, Heide OM. 2021. Dynamics of dormancy regulation in 'Sonata' strawberry and its relation to flowering and runnering. CABI Agriculture and Bioscience 2:4

doi: 10.1186/s43170-021-00026-x
[39]

Kumar A, Singh N, Kaur A, Joshi R. 2023. Sneak-peek into the chlorophyll content, antioxidant activity, targeted and non-targeted UHPLC-QTOF LC/MS metabolomic fingerprints of pulse microgreens grown under different photoperiod regimes. Food Bioscience 52:102506

doi: 10.1016/j.fbio.2023.102506
[40]

Terekhova VI, Bocharova MA, Yembaturova EY. 2022. The influence of supplementary lighting sources on agro-biological performance in greenhouse-grown cucumbers. BIO Web of Conferences 52:00058

doi: 10.1051/bioconf/20225200058
[41]

Wang F, Han T, Chen ZJ. 2024. Circadian and photoperiodic regulation of the vegetative to reproductive transition in plants. Communications Biology 7:579

doi: 10.1038/s42003-024-06275-6
[42]

Lange M, Schaber J, Marx A, Jäckel G, Badeck FW, et al. 2016. Simulation of forest tree species' bud burst dates for different climate scenarios: chilling requirements and photo-period may limit bud burst advancement. International Journal of Biometeorology 60:1711−26

doi: 10.1007/s00484-016-1161-8
[43]

Elmardy NA, Yousef AF, Lin K, Zhang X, Ali MM, et al. 2021. Photosynthetic performance of rocket (Eruca sativa Mill.) grown under different regimes of light intensity, quality, and photoperiod. PLoS One 16:e0257745

doi: 10.1371/journal.pone.0257745
[44]

Li Y, Lu Y, Zhou Y, Wei X, Peng Y, et al. 2021. Diurnal transcriptomics analysis reveals the regulatory role of the circadian rhythm in super-hybrid rice LY2186. Genomics 113:1281−90

doi: 10.1016/j.ygeno.2020.12.046
[45]

Hu ZH, Zhang N, Qin ZY, Li JW, Tao JP, et al. 2024. Circadian rhythm response and its effect on photosynthetic characteristics of the Lhcb family genes in tea plant. BMC Plant Biology 24:333

doi: 10.1186/s12870-024-04958-0
[46]

Hsu YP, Harmer LS. 2014. Wheels within wheels: the plant circadian system. Trends in Plant Science 19:240−49

doi: 10.1016/j.tplants.2013.11.007
[47]

Zhu Y, Narsai R, He C, Wang Y, Berkowitz O, et al. 2023. Coordinated regulation of the mitochondrial retrograde response by circadian clock regulators and ANAC017. Plant Communications 4:100501

doi: 10.1016/j.xplc.2022.100501
[48]

Müller LM, Mombaerts L, Pankin A, Davis SJ, Webb AAR, et al. 2020. Differential effects of day/night cues and the circadian clock on the barley transcriptome. Plant Physiology 183:765−79

doi: 10.1104/pp.19.01411
[49]

Hussain Q, Zheng M, Hänninen H, Bhalerao RP, Riaz MW, et al. 2022. Effect of the photoperiod on bud dormancy in Liriodendron chinense. Journal of Plant Physiology 279:153835

doi: 10.1016/j.jplph.2022.153835
[50]

Hildreth SB, Littleton ES, Clark LC, Puller GC, Kojima S, et al. 2022. Mutations that alter Arabidopsis flavonoid metabolism affect the circadian clock. The Plant Journal 4:932−45

doi: 10.1111/tpj.15718
[51]

Dong MX, Zhang W, Tu ML, Zhang SB. 2025. Spatial and temporal regulation of flower coloration in Cymbidium lowianum. Plant, Cell & Environment 48:3844−60

doi: 10.1111/pce.15398
[52]

Li M, Wang W, Wang Y, Guo L, Liu Y, et al. 2024. Duplicated chalcone synthase (CHS) genes modulate flavonoid production in tea plants in response to light stress. Journal of Integrative Agriculture 23:1940−55

doi: 10.1016/j.jia.2024.03.060
[53]

Li L, Jiang G, Li H, Liu J, Zhang P, et al. 2024. UV-B induced flavonoid accumulation and related gene expression in blue- grained wheat at different periods of time. Frontiers in Plant Science 15:1520543

doi: 10.3389/fpls.2024.1520543
[54]

Righini S, Rodriguez EJ, Berosich C, Grotewold E, Casati P, et al. 2019. Apigenin produced by maize flavone synthase I and II protects plants against UV-B-induced damage. Plant, Cell & Environment 42:495−508

doi: 10.1111/pce.13428
[55]

Bhattacharya A, Khanale V, Char B. 2017. Plant circadian rhythm in stress signaling. Indian Journal of Plant Physiology 22:147−55

doi: 10.1007/s40502-017-0299-7
[56]

Fan W, He Z, Zhe M, Feng J, Zhang L, et al. 2023. High-quality Cymbidium mannii genome and multifaceted regulation of crassulacean acid metabolism in epiphytes. Plant Communications 4:100564

doi: 10.1016/j.xplc.2023.100564
[57]

Scialdone A, Mugford ST, Feike D, Skeffington A, Borrill P, et al. 2013. Arabidopsis plants perform arithmetic division to prevent starvation at night. eLife 2:e00669

doi: 10.7554/eLife.00669
[58]

Lahari Z, van Boerdonk S, Omoboye OO, Reichelt M, Höfte M, et al. 2023. Strigolactone deficiency induces jasmonate, sugar and flavonoid phytoalexin accumulation enhancing rice defense against the blast fungus Pyricularia oryzae. New Phytologist 241:827−44

doi: 10.1111/nph.19354