| [1] |
Keats JJ, Cuyugan L, Adkins J, Liang WS. 2018. Whole genome library construction for next generation sequencing. In Disease Gene Identification, ed. DiStefano J. New York, NY: Humana Press. Volume 1706. pp. 151−61. doi: 10.1007/978-1-4939-7471-9_8 |
| [2] |
Zhang J, Lei Y, Wang B, Li S, Yu S, et al. 2020. The high-quality genome of diploid strawberry (Fragaria nilgerrensis) provides new insights into anthocyanin accumulation. |
| [3] |
Shulaev V, Korban SS, Sosinski B, Abbott AG, Aldwinckle HS, et al. 2008. Multiple models for Rosaceae genomics. |
| [4] |
Shulaev V, Sargent DJ, Crowhurst RN, Mockler TC, Folkerts O, et al. 2011. The genome of woodland strawberry (Fragaria vesca). |
| [5] |
Zhou Y, Xiong J, Shu Z, Dong C, Gu T, et al. 2023. The telomere-to-telomere genome of Fragaria vesca reveals the genomic evolution of Fragaria and the origin of cultivated octoploid strawberry. |
| [6] |
Joldersma D, Sadowski N, Timp W, Liu Z. 2022. Assembly and annotation of Fragaria vesca 'Yellow Wonder' genome, a model diploid strawberry for molecular genetic research. |
| [7] |
Vecchietti A, Lazzari B, Ortugno C, Bianchi F, Malinverni R, et al. 2009. Comparative analysis of expressed sequence tags from tissues in ripening stages of peach (Prunus persica L. Batsch). |
| [8] |
Lee SG, Na D, Park C. 2021. Comparability of reference-based and reference-free transcriptome analysis approaches at the gene expression level. |
| [9] |
Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. |
| [10] |
Martin M. 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. |
| [11] |
Gao F, Wang X, Li X, Xu M, Li H, et al. 2018. Long-read sequencing and de novo genome assembly of Ammopiptanthus nanus, a desert shrub. |
| [12] |
Liu B, Shi Y, Yuan J, Hu X, Zhang H, et al. 2013. Estimation of genomic characteristics by analyzing k-mer frequency in de novo genome projects. |
| [13] |
Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, et al. 2017. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. |
| [14] |
Chakraborty M, Baldwin-Brown JG, Long AD, Emerson JJ. 2016. Contiguous and accurate de novo assembly of metazoan genomes with modest long read coverage. |
| [15] |
Li H. 2013. Aligning sequence reads clone sequences and assembly contigs with BWA-MEM. |
| [16] |
Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, et al. 2014. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. |
| [17] |
Servant N, Varoquaux N, Lajoie BR, Viara E, Chen CJ, et al. 2015. HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. |
| [18] |
Hariharan R, Toyama K. 2004 Project Lachesis: parsing and modeling location histories. In Geographic Information Science, eds Egenhofer MJ, Freksa C, Miller HJ. Berlin, Heidelberg: Springer. Volume 3234. pp. 106–24. doi: 10.1007/978-3-540-30231-5_8 |
| [19] |
English AC, Richards S, Han Y, Wang M, Vee V, et al. 2012. Mind the gap: upgrading genomes with Pacific Biosciences RS long-read sequencing technology. |
| [20] |
Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. 2015. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. |
| [21] |
Wang Y, Zhang F, Cui W, Chen K, Zhao R, et al. 2019. The FvPHR1 transcription factor control phosphate homeostasis by transcriptionally regulating miR399a in woodland strawberry. |
| [22] |
Haas BJ, Salzberg SL, Zhu W, Pertea M, Allen JE, et al. 2008. Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments. |
| [23] |
Stanke M, Waack S. 2003. Gene prediction with a hidden Markov model and a new intron submodel. |
| [24] |
Majoros WH, Pertea M, Salzberg SL. 2004. TigrScan and GlimmerHMM: two open source ab initio eukaryotic gene-finders. |
| [25] |
Mao J, Wang Y, Wang B, Li J, Zhang C, et al. 2023. High-quality haplotype-resolved genome assembly of cultivated octoploid strawberry. |
| [26] |
Deng Y, Lu S. 2017. Biosynthesis and regulation of phenylpropanoids in plants. |
| [27] |
Premathilake AT, Ni J, Shen J, Bai S, Teng Y. 2020. Transcriptome analysis provides new insights into the transcriptional regulation of methyl jasmonate-induced flavonoid biosynthesis in pear calli. |
| [28] |
Zhang Y, Feng Y, Yang S, Qiao H, Wu A, et al. 2023. Identification of flavanone 3-hydroxylase gene family in strawberry and expression analysis of fruit at different coloring stages. |
| [29] |
Qin S, Liu Y, Cui B, Cheng J, Liu S, et al. 2022. Isolation and functional diversification of dihydroflavonol 4-Reductase gene HvDFR from Hosta ventricosa indicate its role in driving anthocyanin accumulation. |
| [30] |
Baudry A, Heim MA, Dubreucq B, Caboche M, Weisshaar B, et al. 2004. TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana. |
| [31] |
Xu W, Dubos C, Lepiniec L. 2015. Transcriptional control of flavonoid biosynthesis by MYB–bHLH–WDR complexes. |
| [32] |
Castillejo C, Waurich V, Wagner H, Ramos R, Oiza N, et al. 2020. Allelic variation of MYB10 is the major force controlling natural variation in skin and flesh color in strawberry (Fragaria spp.) fruit. |
| [33] |
Wang H, Zhang H, Yang Y, Li M, Zhang Y, et al. 2020. The control of red colour by a family of MYB transcription factors in octoploid strawberry (Fragaria × ananassa) fruits. |
| [34] |
Zhang J, Liu S, Zhao S, Nie Y, Zhang Z. 2025. A telomere-to-telomere haplotype-resolved genome of white-fruited strawberry reveals the complexity of fruit colour formation of cultivated strawberry. |
| [35] |
Yuan H, Cai W, Chen X, Pang F, Wang J, et al. 2022. Heterozygous frameshift mutation in FaMYB10 is responsible for the natural formation of red and white-fleshed strawberry (Fragaria × ananassa Duch). |
| [36] |
Xu P, Li X, Fan J, Tian S, Cao M, et al. 2023. An arginine-to-histidine mutation in flavanone-3-hydroxylase results in pink strawberry fruits. |
| [37] |
Aharoni A, De Vos CHR, Wein M, Sun Z, Greco R, et al. 2001. The strawberry FaMYB1 transcription factor suppresses anthocyanin and flavonol accumulation in transgenic tobacco. |
| [38] |
Gómez-Parada C, Figueroa CR, Kui LW, Moya-León A, Espley RV, et al. 2025. Functionality of the MYB1 transcription factor in the transactivation of leucoanthocyanidin reductase (LAR) promoters of Fragaria × ananassa and Fragaria chiloensis. |
| [39] |
Salvatierra A, Pimentel P, Moya-León MA, Herrera R. 2013. Increased accumulation of anthocyanins in Fragaria chiloensis fruits by transient suppression of FcMYB1 gene. |
| [40] |
Wang X, Lin S, Liu D, Wang Q, McAvoy R, et al. 2019. Characterization and expression analysis of ERF genes in Fragaria vesca suggest different divergences of tandem ERF duplicates. |
| [41] |
Edger PP, Poorten TJ, VanBuren R, Hardigan MA, Colle M, et al. 2019. Origin and evolution of the octoploid strawberry genome. |
| [42] |
Bao Y, Zhang Z, Zhao W, Xiao J, Song S, et al. 2024. Database Resources of the National Genomics Data Center, China National Center for Bioinformation in 2025. |
| [43] |
Ma Y, Zhao X, Jia Y, Han Z, Yu C, et al. 2025. The updated genome warehouse: enhancing data value, security, and usability to address data expansion. |