[1]

Keats JJ, Cuyugan L, Adkins J, Liang WS. 2018. Whole genome library construction for next generation sequencing. In Disease Gene Identification, ed. DiStefano J. New York, NY: Humana Press. Volume 1706. pp. 151−61. doi: 10.1007/978-1-4939-7471-9_8

[2]

Zhang J, Lei Y, Wang B, Li S, Yu S, et al. 2020. The high-quality genome of diploid strawberry (Fragaria nilgerrensis) provides new insights into anthocyanin accumulation. Plant Biotechnology Journal 18:1908−24

doi: 10.1111/pbi.13351
[3]

Shulaev V, Korban SS, Sosinski B, Abbott AG, Aldwinckle HS, et al. 2008. Multiple models for Rosaceae genomics. Plant Physiology 147:985−1003

doi: 10.1104/pp.107.115618
[4]

Shulaev V, Sargent DJ, Crowhurst RN, Mockler TC, Folkerts O, et al. 2011. The genome of woodland strawberry (Fragaria vesca). Nature Genetics 43:109−16

doi: 10.1038/ng.740
[5]

Zhou Y, Xiong J, Shu Z, Dong C, Gu T, et al. 2023. The telomere-to-telomere genome of Fragaria vesca reveals the genomic evolution of Fragaria and the origin of cultivated octoploid strawberry. Horticulture Research 10:uhad027

doi: 10.1093/hr/uhad027
[6]

Joldersma D, Sadowski N, Timp W, Liu Z. 2022. Assembly and annotation of Fragaria vesca 'Yellow Wonder' genome, a model diploid strawberry for molecular genetic research. Fruit Research 2:13

doi: 10.48130/FruRes-2022-0013
[7]

Vecchietti A, Lazzari B, Ortugno C, Bianchi F, Malinverni R, et al. 2009. Comparative analysis of expressed sequence tags from tissues in ripening stages of peach (Prunus persica L. Batsch). Tree Genetics & Genomes 5:377−91

doi: 10.1007/s11295-008-0193-6
[8]

Lee SG, Na D, Park C. 2021. Comparability of reference-based and reference-free transcriptome analysis approaches at the gene expression level. BMC Bioinformatics 22:310

doi: 10.1186/s12859-021-04226-0
[9]

Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114−20

doi: 10.1093/bioinformatics/btu170
[10]

Martin M. 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet Journal 17:10

doi: 10.14806/ej.17.1.200
[11]

Gao F, Wang X, Li X, Xu M, Li H, et al. 2018. Long-read sequencing and de novo genome assembly of Ammopiptanthus nanus, a desert shrub. GigaScience 7:giy074

doi: 10.1093/gigascience/giy074
[12]

Liu B, Shi Y, Yuan J, Hu X, Zhang H, et al. 2013. Estimation of genomic characteristics by analyzing k-mer frequency in de novo genome projects. arXiv 1308.2012v2

doi: 10.48550/arXiv.1308.2012
[13]

Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, et al. 2017. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Research 27:722−36

doi: 10.1101/gr.215087.116
[14]

Chakraborty M, Baldwin-Brown JG, Long AD, Emerson JJ. 2016. Contiguous and accurate de novo assembly of metazoan genomes with modest long read coverage. Nucleic Acids Research 44:e147

doi: 10.1093/nar/gkw654
[15]

Li H. 2013. Aligning sequence reads clone sequences and assembly contigs with BWA-MEM. arXiv 1303.3997

doi: 10.48550/arXiv.1303.3997
[16]

Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, et al. 2014. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 9:e112963

doi: 10.1371/journal.pone.0112963
[17]

Servant N, Varoquaux N, Lajoie BR, Viara E, Chen CJ, et al. 2015. HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biology 16:259

doi: 10.1186/s13059-015-0831-x
[18]

Hariharan R, Toyama K. 2004 Project Lachesis: parsing and modeling location histories. In Geographic Information Science, eds Egenhofer MJ, Freksa C, Miller HJ. Berlin, Heidelberg: Springer. Volume 3234. pp. 106–24. doi: 10.1007/978-3-540-30231-5_8

[19]

English AC, Richards S, Han Y, Wang M, Vee V, et al. 2012. Mind the gap: upgrading genomes with Pacific Biosciences RS long-read sequencing technology. PLoS One 7:e47768

doi: 10.1371/journal.pone.0047768
[20]

Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. 2015. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31:3210−12

doi: 10.1093/bioinformatics/btv351
[21]

Wang Y, Zhang F, Cui W, Chen K, Zhao R, et al. 2019. The FvPHR1 transcription factor control phosphate homeostasis by transcriptionally regulating miR399a in woodland strawberry. Plant Science 280:258−68

doi: 10.1016/j.plantsci.2018.12.025
[22]

Haas BJ, Salzberg SL, Zhu W, Pertea M, Allen JE, et al. 2008. Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments. Genome Biology 9:R7

doi: 10.1186/gb-2008-9-1-r7
[23]

Stanke M, Waack S. 2003. Gene prediction with a hidden Markov model and a new intron submodel. Bioinformatics 19:ii215−ii225

doi: 10.1093/bioinformatics/btg1080
[24]

Majoros WH, Pertea M, Salzberg SL. 2004. TigrScan and GlimmerHMM: two open source ab initio eukaryotic gene-finders. Bioinformatics 20:2878−79

doi: 10.1093/bioinformatics/bth315
[25]

Mao J, Wang Y, Wang B, Li J, Zhang C, et al. 2023. High-quality haplotype-resolved genome assembly of cultivated octoploid strawberry. Horticulture Research 10:uhad002

doi: 10.1093/hr/uhad002
[26]

Deng Y, Lu S. 2017. Biosynthesis and regulation of phenylpropanoids in plants. Critical Reviews in Plant Sciences 36:257−90

doi: 10.1080/07352689.2017.1402852
[27]

Premathilake AT, Ni J, Shen J, Bai S, Teng Y. 2020. Transcriptome analysis provides new insights into the transcriptional regulation of methyl jasmonate-induced flavonoid biosynthesis in pear calli. BMC Plant Biology 20:388

doi: 10.1186/s12870-020-02606-x
[28]

Zhang Y, Feng Y, Yang S, Qiao H, Wu A, et al. 2023. Identification of flavanone 3-hydroxylase gene family in strawberry and expression analysis of fruit at different coloring stages. International Journal of Molecular Sciences 24:16807

doi: 10.3390/ijms242316807
[29]

Qin S, Liu Y, Cui B, Cheng J, Liu S, et al. 2022. Isolation and functional diversification of dihydroflavonol 4-Reductase gene HvDFR from Hosta ventricosa indicate its role in driving anthocyanin accumulation. Plant Signaling & Behavior 17:2010389

doi: 10.1080/15592324.2021.2010389
[30]

Baudry A, Heim MA, Dubreucq B, Caboche M, Weisshaar B, et al. 2004. TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana. The Plant Journal 39:366−80

doi: 10.1111/j.1365-313X.2004.02138.x
[31]

Xu W, Dubos C, Lepiniec L. 2015. Transcriptional control of flavonoid biosynthesis by MYB–bHLH–WDR complexes. Trends in Plant Science 20:176−85

doi: 10.1016/j.tplants.2014.12.001
[32]

Castillejo C, Waurich V, Wagner H, Ramos R, Oiza N, et al. 2020. Allelic variation of MYB10 is the major force controlling natural variation in skin and flesh color in strawberry (Fragaria spp.) fruit. The Plant Cell 32:3723−49

doi: 10.1105/tpc.20.00474
[33]

Wang H, Zhang H, Yang Y, Li M, Zhang Y, et al. 2020. The control of red colour by a family of MYB transcription factors in octoploid strawberry (Fragaria × ananassa) fruits. Plant Biotechnology Journal 18:1169−84

doi: 10.1111/pbi.13282
[34]

Zhang J, Liu S, Zhao S, Nie Y, Zhang Z. 2025. A telomere-to-telomere haplotype-resolved genome of white-fruited strawberry reveals the complexity of fruit colour formation of cultivated strawberry. Plant Biotechnology Journal 23:78−80

doi: 10.1111/pbi.14479
[35]

Yuan H, Cai W, Chen X, Pang F, Wang J, et al. 2022. Heterozygous frameshift mutation in FaMYB10 is responsible for the natural formation of red and white-fleshed strawberry (Fragaria × ananassa Duch). Frontiers in Plant Science 13:1027567

doi: 10.3389/fpls.2022.1027567
[36]

Xu P, Li X, Fan J, Tian S, Cao M, et al. 2023. An arginine-to-histidine mutation in flavanone-3-hydroxylase results in pink strawberry fruits. Plant Physiology 193:1849−65

doi: 10.1093/plphys/kiad424
[37]

Aharoni A, De Vos CHR, Wein M, Sun Z, Greco R, et al. 2001. The strawberry FaMYB1 transcription factor suppresses anthocyanin and flavonol accumulation in transgenic tobacco. The Plant Journal 28:319−32

doi: 10.1046/j.1365-313X.2001.01154.x
[38]

Gómez-Parada C, Figueroa CR, Kui LW, Moya-León A, Espley RV, et al. 2025. Functionality of the MYB1 transcription factor in the transactivation of leucoanthocyanidin reductase (LAR) promoters of Fragaria × ananassa and Fragaria chiloensis. Journal of Plant Growth Regulation 44:1104−15

doi: 10.1007/s00344-024-11281-3
[39]

Salvatierra A, Pimentel P, Moya-León MA, Herrera R. 2013. Increased accumulation of anthocyanins in Fragaria chiloensis fruits by transient suppression of FcMYB1 gene. Phytochemistry 90:25−36

doi: 10.1016/j.phytochem.2013.02.016
[40]

Wang X, Lin S, Liu D, Wang Q, McAvoy R, et al. 2019. Characterization and expression analysis of ERF genes in Fragaria vesca suggest different divergences of tandem ERF duplicates. Frontiers in Genetics 10:805

doi: 10.3389/fgene.2019.00805
[41]

Edger PP, Poorten TJ, VanBuren R, Hardigan MA, Colle M, et al. 2019. Origin and evolution of the octoploid strawberry genome. Nature Genetics 51:541−47

doi: 10.1038/s41588-019-0356-4
[42]

Bao Y, Zhang Z, Zhao W, Xiao J, Song S, et al. 2024. Database Resources of the National Genomics Data Center, China National Center for Bioinformation in 2025. Nucleic Acids Research 53:D30−D44

doi: 10.1093/nar/gkae978
[43]

Ma Y, Zhao X, Jia Y, Han Z, Yu C, et al. 2025. The updated genome warehouse: enhancing data value, security, and usability to address data expansion. Genomics, Proteomics & Bioinformatics 00:qzaf010 (Accepted manuscript)

doi: 10.1093/gpbjnl/qzaf010