[1]

Zou Z, Zou X. 2021. Geographical and ecological differences in pepper cultivation and consumption in China. Frontiers in Nutrition 8:718517

doi: 10.3389/fnut.2021.718517
[2]

Missihoun AA, Fanou AA, Nanoukon CNM, Agbo IR, Sedah P, et al. 2025. Surveys of virus diseases and molecular identification of viruses affecting pepper crops (Capsicum spp.) in southern Benin. Crop Protection 188:106999

doi: 10.1016/j.cropro.2024.106999
[3]

Li P, Ruan T, Meng Q, Li K, Qing L. 2021. Identification of a novel pepper-infecting monopartite begomovirus in China. Archives of Virology 166:1751−54

doi: 10.1007/s00705-021-04989-0
[4]

Kenyon L, Kumar S, Tsai WS, Hughes J. 2014. Virus diseases of peppers (Capsicum spp.) and their control. Advances in Virus Research 90:297−354

doi: 10.1016/B978-0-12-801246-8.00006-8
[5]

Li Y, Wang Y, Hu J, Xiao L, Tan G, et al. 2017. The complete genome sequence, occurrence and host range of Tomato mottle mosaic virus Chinese isolate. Virology Journal 14:15

doi: 10.1186/s12985-016-0676-2
[6]

Luo C, Luo Y, Luo H, Han K, Lei L, et al. 2025. High-throughput sequencing identification and multiplex RT-PCR detection of pepper viruses. Physiological and Molecular Plant Pathology 136:102555

doi: 10.1016/j.pmpp.2024.102555
[7]

Li Y, Tan G, Xiao L, Zhou W, Lan P, et al. 2021. A multiyear survey and identification of pepper-and tomato-infecting viruses in Yunnan Province, China. Frontiers in Microbiology 12:623875

doi: 10.3389/fmicb.2021.623875
[8]

Xu B, Li M, Yu J. 2002. Occurrence and symptom types of pepper virus disease in Gansu Province. Gansu Agricultural Science and Technology 2002:42−44 (In Chinese)

[9]

Wen Z, Liu Z, Zhang L, Liu J, Wang J, et al. 2010. Identification of viruses infecting Capsicum annuum L. in Hexi area of Gansu Province. China Vegetables 16:74−78 (In Chinese)

doi: 10.19928/j.cnki.1000-6346.2010.16.014
[10]

Wang X, Liu F, Zhou G, Li XH, Li Z. 2006. Detection and molecular characterization of pepper mild mottle virus in China. Journal of Phytopathology 154:755−57

doi: 10.1111/j.1439-0434.2006.01186.x
[11]

Zahra N, Hafeez MB, Al Shukaily M, Al-Sadi AM, Siddique KHM, et al. 2023. Influence of abiotic stresses on disease infestation in plants. Physiological and Molecular Plant Pathology 127:102125

doi: 10.1016/j.pmpp.2023.102125
[12]

Jones, RAC. 2016. Future scenarios for plant virus pathogens as climate change progresses. Advances in Virus Research 95:87−147

doi: 10.1016/bs.aivir.2016.02.004
[13]

Priya RS, Yuvaraj M, Sharmila R, Jagathjothi N, Saranya M, et al. 2024. Effects of climate change on plant diseases. In Plant Quarantine Challenges under Climate Change Anxiety, eds Abd-Elsalam KA, Abdel-Momen SM. Cham: Springer. pp. 183−225 doi: 10.1007/978-3-031-56011-8_7

[14]

Pidikiti P, Sudhakar CS, Singh H, Kumar A, Meshram S. 2023. A review on molecular aspects of virus-vector relationship to the aphids. Journal of Applied and Natural Science 15:616−23

doi: 10.31018/jans.v15i2.4391
[15]

Zohoungbogbo HPF, Ganta JSO, Oliva R, Chan YL, Adandonon A, et al. 2024. Farmers' perception of viral diseases and their management in pepper (Capsicum spp.) production in Benin. HortScience 59:110−20

doi: 10.21273/HORTSCI17422-23
[16]

Shim JH, Eun JB, Zaky AA, Hussein AS, Hacimüftüoğlu A, et al. 2023. A comprehensive review of pesticide residues in peppers. Foods 12:970

doi: 10.3390/foods12050970
[17]

Zhao M, Lin X, Guo X. 2022. The role of insect symbiotic bacteria in metabolizing phytochemicals and agrochemicals. Insects 13:583

doi: 10.3390/insects13070583
[18]

Varshney RK, Bohra A, Yu J, Graner A, Zhang Q, et al. 2021. Designing future crops: genomics-assisted breeding comes of age. Trends in Plant Science 26:631−49

doi: 10.1016/j.tplants.2021.03.010
[19]

Wang Y, Wei M, Duan P, Ma Y, Zhang T, et al. 2023. Development of KASP molecular markers related to the fertility restoration of cytoplasmic male sterility in pepper. Scientia Horticulturae 310:111760

doi: 10.1016/j.scienta.2022.111760
[20]

Pedrozo R, Osakina A, Huang Y, Nicolli CP, Wang L, et al. 2025. Status on genetic resistance to rice blast disease in the post-genomic era. Plants 14:807

doi: 10.3390/plants14050807
[21]

Zhang N, Zhu M, Qiu Y, Fang Z, Zhuang M, et al. 2025. Rapid introgression of the clubroot resistance gene CRa into cabbage skeleton inbred lines through marker assisted selection. Molecular Breeding 45:19

doi: 10.1007/s11032-024-01532-2
[22]

Ontañón C, Ojinaga M, Larregla S, Zabala JA, Reva A, et al. 2024. Molecular analysis of a Spanish isolate of chili pepper mild mottle virus and evaluation of seed transmission and resistance genes. European Journal of Plant Pathology 168:401−18

doi: 10.1007/s10658-023-02765-1
[23]

Sugita T, Yamaguchi K, Sugimura Y, Nagata R, Yuji K, et al. 2004. Development of SCAR markers linked to L3 gene in Capsicum. Breeding Science 54:111−15

doi: 10.1270/jsbbs.54.111
[24]

Caranta C, Thabuis A, Palloix A. 1999. Development of a CAPS marker for the Pvr4 locus: a tool for pyramiding potyvirus resistance genes in pepper. Genome 42:1111−16

doi: 10.1139/g99-069
[25]

Arnedo-Andrés MS, Luis-Arteaga M, Gil Ortega R. 2006. New inheritance studies related to Potato Virus Y (PVY) resistance in Capsicum annuum L. 'Serrano Criollo de Morelos-334'. Euphytica 151:95−101

doi: 10.1007/s10681-006-9132-5
[26]

Lee JM, Jahn MM, Yeam I. 2013. Allelic relationships at the pvr1 locus in Capsicum annuum. Euphytica 194:417−24

doi: 10.1007/s10681-013-0967-2
[27]

Tamisier L, Lacombe S, Caranta C, Gallois JL, Moury B. 2023. Virus evolution faced to multiple host targets: the potyvirus-pepper case study. In Viral Fitness and Evolution, eds Domingo E, Schuster P, Elena SF, Perales C. Cham: Springer. Volume 439. pp. 121–38 doi: 10.1007/978-3-031-15640-3_3

[28]

Yao M, Li N, Wang F, Ye Z. 2013. Genetic analysis and identification of QTLs for resistance to cucumber mosaic virus in chili pepper (Capsicum annuum L.). Euphytica 193:135−45

doi: 10.1007/s10681-013-0953-8
[29]

Guo G, Wang S, Liu J, Pan B, Diao W, et al. 2017. Rapid identification of QTLs underlying resistance to Cucumber mosaic virus in pepper (Capsicum frutescens). Theoretical and Applied Genetics 130:41−52

doi: 10.1007/s00122-016-2790-3
[30]

Lee JD, Han JH, Yoon JB. 2012. A set of allele-specific markers linked to L locus resistant to tobamovirus in Capsicum spp. Korean Society of Horticultural Science 30:286−93

doi: 10.7235/hort.2012.12018
[31]

Siddique MI, Lee JH, Ahn JH, Kusumawardhani MK, Safitri R, et al. 2022. Genotyping-by-sequencing-based QTL mapping reveals novel loci for Pepper yellow leaf curl virus (PepYLCV) resistance in Capsicum annuum. PLoS One 17:e0264026

doi: 10.1371/journal.pone.0264026
[32]

Liu Y, Li F, Li Y, Zhang S, Gao X, et al. 2019. Identification, distribution and occurrence of viruses in the main vegetables of China. Scientia Agricultura Sinica 52:239−61 (In Chinese)

[33]

Jiao Y, Xu C, Li J, Gu Y, Xia C, et al. 2020. Characterization and a RT-RPA assay for rapid detection of Chilli Veinal mottle virus (ChiVMV) in tobacco. Virology Journal 17:33

doi: 10.1186/s12985-020-01299-w
[34]

Gong M, Zhao H, Wang M, Wu X, Zhao Z, et al. 2022. Identification of viruses infecting peppers in Guangxi by small RNA deep sequencing and RT-PCR. Acta Horticulturae Sinica 49:1060−72 (In Chinese)

doi: 10.16420/j.issn.0513-353x.2021-0673
[35]

Tettey CK, Yan ZY, Ma HY, Zhao MS, Geng C, et al. 2022. Tomato mottle mosaic virus: characterization, resistance gene effectiveness, and quintuplex RT-PCR detection system. Journal of Integrative Agriculture 21:2641−51

doi: 10.1016/j.jia.2022.07.020
[36]

Zhang X. 2022. Pathogen identification and detection of pepper virus disease in Xinjiang. Thesis doi: 10.27332/d.cnki.gshzu.2022.000382 (In Chinese)

[37]

Shao Y, Zhang W, Wang H, Wang Y, Miao P, et al. 2023. Establishment of a rapid RT-LAMP detection method for pepper mild mottle virus. China Vegetables 12:42−48 (In Chinese)

doi: 10.19928/j.cnki.1000-6346.2023.2045
[38]

Wang L, Tav W, Yang Y, Dai H, Sun X, Qiao N, et al. 2017. Molecular detection and identification of main viruses on pepper in Shandong Province. Scientia Agricultura Sinica 50:2728−38

doi: 10.3864/j.issn.0578-1752.2017.14.009
[39]

Wahyono A, Murti RH, Hartono S, Nuringtyas TR, Wijonarko A, et al. 2023. Current status and complexity of three Begomovirus species in pepper plants in lowlands and highlands in Java Island, Indonesia. Viruses 15:1278

doi: 10.3390/v15061278
[40]

Syller J. 2012. Facilitative and antagonistic interactions between plant viruses in mixed infections. Molecular Plant Pathology 13:204−16

doi: 10.1111/j.1364-3703.2011.00734.x
[41]

Syller J, Grupa A. 2016. Antagonistic within-host interactions between plant viruses: molecular basis and impact on viral and host fitness. Molecular Plant Pathology 17:769−82

doi: 10.1111/mpp.12322
[42]

Damiri N. 2014. Mixed viral infection and growth stage on chilli (Capsicum annuum L.) production. Tropical Agricultural Science 37:275−83

[43]

Kim MS, Kim MJ, Hong JS, Choi JK, Ryu KH. 2010. Patterns in disease progress and the influence of single and multiple viral infections on pepper (Capsicum annuum L.) growth. European Journal of Plant Pathology 127:53−61

doi: 10.1007/s10658-009-9570-8
[44]

Liu P, Zhou W, Dong L, Liu S, Nawaz G, et al. 2025. Development and application of Pik locus-specific molecular markers for blast resistance genes in Yunnan Japonica rice cultivars. Plants 14:592

doi: 10.3390/plants14040592
[45]

Hudcovicová M, Korbelová E, Šliková S, Klčová L, Mihálik D, et al. 2015. Molecular selection of tomato and pepper breeding lines possessing resistance alleles against tobamoviruses. Agriculture 61:33

doi: 10.1515/agri-2015-0008
[46]

Guo G, Zhu X, Pan B, Diao W, Liu J, et al. 2021. Innovation of pepper germplasm resource with resistance to cucumber mosaic virus by InDel molecular marker assisted selection. Jiangsu Journal of Agricultural Sciences 37:1251−61 (In Chinese)

doi: 10.3969/j.issn.1000-4440.2021.05.021