[1]

Song M, Belov P, Kapitanova P. 2017. Wireless power transfer inspired by the modern trends in electromagnetics. Applied Physics Reviews 4:021102

doi: 10.1063/1.4981396
[2]

Zhao L, Thrimawithana DJ, Madawala UK, Hu AP, Mi CC. 2019. A misalignment-tolerant series-hybrid wireless EV charging system with integrated magnetics. IEEE Transactions on Power Electronics 34:1276−85

doi: 10.1109/TPEL.2018.2828841
[3]

Kalra GR, Thrimawithana DJ, Riar BS, Huang CY, Neuburger M. 2020. A novel boost active bridge-based inductive power transfer system. IEEE Transactions on Industrial Electronics 67:1103−12

doi: 10.1109/TIE.2019.2898615
[4]

Campi T, Cruciani S, Maradei F, Feliziani M. 2019. Pacemaker lead coupling with an automotive wireless power transfer system. IEEE Transactions on Electromagnetic Compatibility 61:1935−43

doi: 10.1109/TEMC.2019.2906328
[5]

Basar MR, Ahmad MY, Cho J, Ibrahim F. 2018. An improved wearable resonant wireless power transfer system for biomedical capsule endoscope. IEEE Transactions on Industrial Electronics 65:7772−81

doi: 10.1109/TIE.2018.2801781
[6]

Van Thuan N, Kang SH, Choi JH, Jung CW. 2015. Magnetic resonance wireless power transfer using three-coil system with single planar receiver for laptop applications. IEEE Transactions on Consumer Electronics 61:160−66

doi: 10.1109/TCE.2015.7150569
[7]

Zhang Y, Kan T, Yan Z, Mao Y, Wu Z, et al. 2019. Modeling and analysis of series-none compensation for wireless power transfer systems with a strong coupling. IEEE Transactions on Power Electronics 34:1209−15

doi: 10.1109/TPEL.2018.2835307
[8]

Eteng AA, Rahim SKA, Leow CY, Jayaprakasam S, Chew BW. 2017. Low-power near-field magnetic wireless energy transfer links: a review of architectures and design approaches. Renewable and Sustainable Energy Reviews 77:486−505

doi: 10.1016/j.rser.2017.04.051
[9]

Jonah O, Georgakopoulos SV, Tentzeris MM. 2013. Orientation insensitive power transfer by magnetic resonance for mobile devices. 2013 IEEE Wireless Power Transfer (WPT), 15−16 May, 2013, Perugia, Italy. USA: IEEE. pp. 5−8 doi: 10.1109/WPT.2013.6556924

[10]

Hoang H, Lee S, Kim Y, Choi Y, Bien F. 2012. An adaptive technique to improve wireless power transfer for consumer electronics. IEEE Transactions on Consumer Electronics 58:327−32

doi: 10.1109/TCE.2012.6227430
[11]

Kim J, Kim DH, Park YJ. 2016. Free-positioning wireless power transfer to multiple devices using a planar transmitting coil and switchable impedance matching networks. IEEE Transactions on Microwave Theory and Techniques 64:3714−22

doi: 10.1109/TMTT.2016.2608802
[12]

Kim J, Son HC, Kim DH, Park YJ. 2013. Impedance matching considering cross coupling for wireless power transfer to multiple receivers. 2013 IEEE Wireless Power Transfer (WPT), 15−16 May, 2013, Perugia, Italy. USA: IEEE. pp. 226−29 doi: 10.1109/WPT.2013.6556924

[13]

Tan SY, Lee HJ, Lau KY, Ker PJ. 2018. Simulation of 4-coils magnetic resonance coupling for multiple receivers wireless power transfer at various transmission distance. 2018 IEEE Student Conference on Research and Development (SCOReD). 26−28 November, 2018, Selangor, Malaysia. USA: IEEE. pp. 1−5 doi: 10.1109/SCORED.2018.8711181

[14]

Le-Huu H, Ha-Van N, Hong S, Seo C. 2019. Multiple-receiver wireless power transfer system using a cubic transmitter. 2019 IEEE Wireless Power Transfer Conference (WPTC). June 18−21, 2019. London, UK. USA: IEEE. pp. 170−73 doi: 10.1109/wptc45513.2019.9055603

[15]

Kim YJ, Ha D, Chappell WJ, Irazoqui PP. 2016. Selective wireless power transfer for smart power distribution in a miniature-sized multiple-receiver system. IEEE Transactions on Industrial Electronics 63:1853−62

doi: 10.1109/TIE.2015.2493142
[16]

Kim J, Kim DH, Choi J, Kim KH, Park YJ. 2015. Free-positioning wireless charging system for small electronic devices using a bowl-shaped transmitting coil. IEEE Transactions on Microwave Theory and Techniques 63:791−800

doi: 10.1109/TMTT.2015.2398865
[17]

Ha-Van N, Le-Huu H, Seo C. 2019. Design of free-positioning wireless power transfer using a half-rectangular prism transmitting coil. 2019 IEEE Wireless Power Transfer Conference (WPTC). 18−21 June, 2019. London, UK. USA: IEEE. pp. 85−88 doi: 10.1109/wptc45513.2019.9055637

[18]

Ha-Van N, Seo C. 2018. Analytical and experimental investigations of omnidirectional wireless power transfer using a cubic transmitter. IEEE Transactions on Industrial Electronics 65(2):1358−66

doi: 10.1109/TIE.2017.2733470
[19]

Feng J, Li Q, Lee FC, Fu M. 2019. Transmitter coils design for free-positioning omnidirectional wireless power transfer system. IEEE Transactions on Industrial Informatics 15:4656−64

doi: 10.1109/TII.2019.2908217
[20]

Liang Z, Wang J, Zhang Y, Jiang J, Yan Z, et al. 2019. A compact spatial free-positioning wireless charging system for consumer electronics using a three-dimensional transmitting coil. Energies 12:1409

doi: 10.3390/en12081409
[21]

Beh TC, Kato M, Imura T, Oh S, Hori Y. 2013. Automated impedance matching system for robust wireless power transfer via magnetic resonance coupling. IEEE Transactions on Industrial Electronics 60:3689−98

doi: 10.1109/TIE.2012.2206337
[22]

Bito J, Jeong S, Tentzeris MM. 2016. A real-time electrically controlled active matching circuit utilizing genetic algorithms for wireless power transfer to biomedical implants. IEEE Transactions on Microwave Theory and Techniques 64:365−74

doi: 10.1109/TMTT.2015.2513765
[23]

Li Y, Dong W, Yang Q, Zhao J, Liu L, et al. 2019. An automatic impedance matching method based on the feedforward-backpropagation neural network for a WPT system. IEEE Transactions on Industrial Electronics 66:3963−72

doi: 10.1109/TIE.2018.2835410
[24]

Jeong S, Lin TH, Tentzeris MM. 2019. Range-adaptive impedance matching of wireless power transfer system using a machine learning strategy based on neural networks. 2019 IEEE MTT-S International Microwave Symposium (IMS). 2−7 June, 2019, Boston, MA, USA. USA: IEEE. pp. 1423−25 doi: 10.1109/mwsym.2019.8700996

[25]

Bertoluzzo M, Buja G, Dashora H. 2019. Avoiding null power point in DD coils. 2019 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (WoW). 18−21 June, 2019, London, UK. USA: IEEE. pp. 11−15 doi: 10.1109/wow45936.2019.9030658

[26]

Manivannan B, Kathirvelu P, Balasubramanian R. 2023. A review on wireless charging methods – The prospects for future charging of EV. Renewable Energy Focus 46:68−87

doi: 10.1016/j.ref.2023.06.002
[27]

Sample AP, Meyer DT, Smith JR. 2011. Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer. IEEE Transactions on Industrial Electronics 58:544−54

doi: 10.1109/TIE.2010.2046002
[28]

Zhang W, Zhang T, Guo Q, Shao L, Zhang N, et al. 2018. High-efficiency wireless power transfer system for 3D, unstationary free-positioning and multi-object charging. IET Electric Power Applications 12:658−65

doi: 10.1049/iet-epa.2017.0581
[29]

Fu M, Yin H, Ma C. 2017. Megahertz multiple-receiver wireless power transfer systems with power flow management and maximum efficiency point tracking. IEEE Transactions on Microwave Theory and Techniques 65:4285−93

doi: 10.1109/TMTT.2017.2689747
[30]

Riehl PS, Satyamoorthy A, Akram H, Yen YC, Yang JC, et al. 2015. Wireless power systems for mobile devices supporting inductive and resonant operating modes. IEEE Transactions on Microwave Theory and Techniques 63:780−90

doi: 10.1109/tmtt.2015.2398413
[31]

Ahn D, Mercier PP. 2016. Wireless power transfer with concurrent 200-kHz and 6.78-MHz operation in a single-transmitter device. IEEE Transactions on Power Electronics 31:5018−29

doi: 10.1109/TPEL.2015.2480122