| [1] |
Yuan T. 1838. Henei county chronicles (in Chinese). Qinyang, China: Chengwen Publishing House |
| [2] |
Shan N, Wang PT, Zhu QL, Sun JY, Zhang HY, et al. 2020. Comprehensive characterization of yam tuber nutrition and medicinal quality of Dioscorea opposita and D. alata from different geographic groups in China. |
| [3] |
Zhao X, Long Z, Lu Y, Jin W. 2024. Research and application progress on efficacy of active substances in Dioscorea opposite Thunb. |
| [4] |
Ju Y, Xue Y, Huang J, Zhai Q, Wang XH. 2014. Antioxidant Chinese yam polysaccharides and its pro-proliferative effect on endometrial epithelial cells. |
| [5] |
Liu Y, Li H, Fan Y, Man S, Liu Z, et al. 2016. Antioxidant and antitumor activities of the extracts from Chinese yam (Dioscorea opposite Thunb.) flesh and peel and the effective compounds. |
| [6] |
Liu M, Tang X, Zhao Z, Ruan Y, Wang L, et al. 2024. Physicochemical properties of anthocyanins from the peels of Dioscorea oppostita. Central South Pharmacy 22:2764−68 |
| [7] |
Cassidy A. 2018. Berry anthocyanin intake and cardiovascular health. |
| [8] |
Xu L, Yue Q, Bian FE, Zhai H, Yao Y. 2018. Melatonin treatment enhances the polyphenol content and antioxidant capacity of red wine. |
| [9] |
Shi L, Li X, Fu Y, Li C. 2023. Environmental stimuli and phytohormones in anthocyanin biosynthesis: a comprehensive review. |
| [10] |
Li P, Li YJ, Zhang FJ, Zhang GZ, Jiang XY, et al. 2017. The Arabidopsis UDP-glycosyltransferases UGT79B2 and UGT79B3, contribute to cold, salt and drought stress tolerance via modulating anthocyanin accumulation. |
| [11] |
Park NI, Xu H, Arasu MV, Al-Dhabi NA, Park SU. 2015. Subcellular localization studies of three phenylalanine ammonia-lyases and cinnamate 4-hydroxylase from Scutellaria baicalensis using GFP fusion proteins. |
| [12] |
Manela N, Oliva M, Ovadia R, Sikron-Persi N, Ayenew B, et al. 2015. Phenylalanine and tyrosine levels are rate-limiting factors in production of health promoting metabolites in Vitis vinifera cv. Gamay Red cell suspension. |
| [13] |
Falcone Ferreyra ML, Rius SP, Casati P. 2012. Flavonoids: biosynthesis, biological functions, and biotechnological applications. |
| [14] |
Li Z, Ahammed GJ. 2023. Hormonal regulation of anthocyanin biosynthesis for improved stress tolerance in plants. |
| [15] |
Xu W, Dubos C, Lepiniec L. 2015. Transcriptional control of flavonoid biosynthesis by MYB–bHLH–WDR complexes. |
| [16] |
Ichino T, Fuji K, Ueda H, Takahashi H, Koumoto Y, et al. 2014. GFS9/TT9 contributes to intracellular membrane trafficking and flavonoid accumulation in Arabidopsis thaliana. |
| [17] |
Stracke R, Jahns O, Keck M, Tohge T, Niehaus K, et al. 2010. Analysis of production of flavonol glycosides-dependent flavonol glycoside accumulation in Arabidopsis thaliana plants reveals MYB11-, MYB12- and MYB111-independent flavonol glycoside accumulation. |
| [18] |
Baudry A, Heim MA, Dubreucq B, Caboche M, Weisshaar B, et al. 2004. TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana. |
| [19] |
Bredeson JV, Lyons JB, Oniyinde IO, Okereke NR, Kolade O, et al. 2022. Chromosome evolution and the genetic basis of agronomically important traits in greater yam. |
| [20] |
Arnau G, Bhattacharjee R, Mn S, Chair H, Malapa R, et al. 2017. Understanding the genetic diversity and population structure of yam (Dioscorea alata L. ) using microsatellite markers. |
| [21] |
Zhou YH, Huo XW, Liu XY, Tai LH, Miao HQ, et al. 2015. Chromosome number and karyotype analysis of Henan Tiegun yam (Dioscorea opposita Thunb.). |
| [22] |
Yang Y. 2017. Determination of main chemical components, anthocyanin extraction and antitumor activity of purple yam. Master's thesis. Southwest Jiaotong University, Chengdu, China |
| [23] |
Fang ZX, Ni YY, Li HM. 2002. Stability in different conditions of anthocyanins from purple sweet patato. |
| [24] |
Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. |
| [25] |
Brown J, Pirrung M, McCue LA. 2017. FQC Dashboard: integrates FastQC results into a web-based, interactive, and extensible FASTQ quality control tool. |
| [26] |
Cheng H, Jarvis ED, Fedrigo O, Koepfli KP, Urban L, et al. 2022. Haplotype-resolved assembly of diploid genomes without parental data. |
| [27] |
Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. |
| [28] |
Ou S, Jiang N. 2018. LTR_retriever: a highly accurate and sensitive program for identification of long terminal repeat retrotransposons. |
| [29] |
Rhie A, Walenz BP, Koren S, Phillippy AM. 2020. Merqury: reference-free quality, completeness, and phasing assessment for genome assemblies. |
| [30] |
Dudchenko O, Batra SS, Omer AD, Nyquist SK, Hoeger M, et al. 2017. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. |
| [31] |
Durand NC, Shamim MS, Machol I, Rao SSP, Huntley MH, et al. 2016. Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. |
| [32] |
Emms DM, Kelly S. 2019. OrthoFinder: phylogenetic orthology inference for comparative genomics. |
| [33] |
Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. |
| [34] |
Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. |
| [35] |
Chen C, Ruhfel BR, Li J, Wang Z, Zhang L, et al. 2023. Phylotranscriptomics of Swertiinae (Gentianaceae) reveals that key floral traits are not phylogenetically correlated. |
| [36] |
De Bie T, Cristianini N, Demuth JP, Hahn MW. 2006. CAFE: a computational tool for the study of gene family evolution. |
| [37] |
Vadakkemukadiyil Chellappan B, Pr S, Vijayan S, Rajan VS, Sasi A, et al. 2019. High quality draft genome of Arogyapacha (Trichopus zeylanicus), an important medicinal plant endemic to Western Ghats of India. |
| [38] |
Tamiru M, Natsume S, Takagi H, White B, Yaegashi H, et al. 2017. Genome sequencing of the staple food crop white Guinea yam enables the development of a molecular marker for sex determination. |
| [39] |
Ou S, Chen J, Jiang N. 2018. Assessing genome assembly quality using the LTR Assembly Index (LAI). |
| [40] |
Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, et al. 2007. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. |
| [41] |
Sun P, Jiao B, Yang Y, Shan L, Li T, et al. 2022. WGDI: a user-friendly toolkit for evolutionary analyses of whole-genome duplications and ancestral karyotypes. |
| [42] |
Guo L, Winzer T, Yang X, Li Y, Ning Z, et al. 2018. The opium poppy genome and morphinan production. |
| [43] |
Jiao Y. 2018. Double the genome, double the fun: genome duplications in angiosperms. |
| [44] |
Sagasser M, Lu GH, Hahlbrock K, Weisshaar B. 2002. A. thaliana TRANSPARENT TESTA 1 is involved in seed coat development and defines the WIP subfamily of plant zinc finger proteins. |
| [45] |
Zhang B, Schrader A. 2017. TRANSPARENT TESTA GLABRA 1-dependent regulation of flavonoid biosynthesis. |
| [46] |
Liu Z, Zhang Y, Wang J, Li P, Zhao C, et al. 2015. Phytochrome-interacting factors PIF4 and PIF5 negatively regulate anthocyanin biosynthesis under red light in Arabidopsis seedlings. |
| [47] |
Xu W, Jiao Y, Li R, Zhang N, Xiao D, et al. 2014. Chinese wild-growing Vitis amurensis ICE1 and ICE2 encode MYC-type bHLH transcription activators that regulate cold tolerance in Arabidopsis. |
| [48] |
Tao R, Yu W, Gao Y, Ni J, Yin L, et al. 2020. Light-induced basic/helix-loop-helix64 enhances anthocyanin biosynthesis and undergoes CONSTITUTIVELY PHOTOMORPHOGENIC 1-mediated degradation in pear. |
| [49] |
Sunil L, Shetty NP. 2022. Biosynthesis and regulation of anthocyanin pathway genes. |
| [50] |
Li S. 2014. Transcriptional control of flavonoid biosynthesis: fine-tuning of the MYB-bHLH-WD40 (MBW) complex. |
| [51] |
Lee CM, Thomashow MF. 2012. Photoperiodic regulation of the C-repeat binding factor (CBF) cold acclimation pathway and freezing tolerance in Arabidopsis thaliana. |