[1]

Dimitrov D, Xu X, Su X, Shrestha N, Liu Y, et al. 2023. Diversification of flowering plants in space and time. Nature Communications 14(1):7609

doi: 10.1038/s41467-023-43396-8
[2]

Che J, Li X, Ouyang Y. 2024. To open early or late: decoding the mystery of diurnal floret opening time in rice. Plant Communications 5(5):100889

doi: 10.1016/j.xplc.2024.100889
[3]

Murali G, Iwamura T, Meiri S, Roll U. 2023. Future temperature extremes threaten land vertebrates. Nature 615(7952):461−67

doi: 10.1038/s41586-022-05606-z
[4]

Zi H, Jing X, Liu A, Fan X, Chen SC, et al. 2023. Simulated climate warming decreases fruit number but increases seed mass. Global Change Biology 29(3):841−55

doi: 10.1111/gcb.16498
[5]

Zhao C, Liu B, Piao S, Wang X, Lobell DB, et al. 2017. Temperature increase reduces global yields of major crops in four independent estimates. Proceedings of the National Academy of Sciences of the United States of America 114(35):9326−31

doi: 10.1073/pnas.1701762114
[6]

Krishna Jagadish SV. 2020. Heat stress during flowering in cereals–effects and adaptation strategies. New Phytologist 226(6):1567−72

doi: 10.1111/nph.16429
[7]

Liu M, Zhou Y, Sun J, Mao F, Yao Q, et al. 2023. From the floret to the canopy: high temperature tolerance during flowering. Plant Communications 4(6):100629

doi: 10.1016/j.xplc.2023.100629
[8]

Zhang H, Zhao Y, Zhu JK. 2020. Thriving under stress: how plants balance growth and the stress response. Developmental Cell 55(5):529−43

doi: 10.1016/j.devcel.2020.10.012
[9]

Kazan K, Lyons R. 2016. The link between flowering time and stress tolerance. Journal of Experimental Botany 67(1):47−60

doi: 10.1093/jxb/erv441
[10]

Napier JD, Heckman RW, Juenger TE. 2023. Gene-by-environment interactions in plants: molecular mechanisms, environmental drivers, and adaptive plasticity. The Plant Cell 35(1):109−24

doi: 10.1093/plcell/koac322
[11]

Wang M, Zhu X, Peng G, Liu M, Zhang S, et al. 2022. Methylesterification of cell-wall pectin controls the diurnal flower-opening times in rice. Molecular Plant 15(6):956−72

doi: 10.1016/j.molp.2022.04.004
[12]

Christenhusz MJM, Byng JW. 2016. The number of known plants species in the world and its annual increase. Phytotaxa 261(3):201−17

doi: 10.11646/phytotaxa.261.3.1
[13]

Mora-García S, de Leone MJ, Yanovsky M. 2017. Time to grow: circadian regulation of growth and metabolism in photosynthetic organisms. Current Opinion in Plant Biology 35:84−90

doi: 10.1016/j.pbi.2016.11.009
[14]

Yoshida H. 2012. Is the lodicule a petal: molecular evidence? Plant Science 184:121−28

doi: 10.1016/j.plantsci.2011.12.016
[15]

Gou Y, Heng Y, Ding W, Xu C, Tan Q, et al. 2024. Natural variation in OsMYB8 confers diurnal floret opening time divergence between indica and japonica subspecies. Nature Communications 15(1):2262

doi: 10.1038/s41467-024-46579-z
[16]

NASA POWER. 2024. Data access viewer. https://power.larc.nasa.gov/data-access-viewer/

[17]

Lobell DB, Bänziger M, Magorokosho C, Vivek B. 2011. Nonlinear heat effects on African maize as evidenced by historical yield trials. Nature Climate Change 1(1):42−45

doi: 10.1038/nclimate1043
[18]

Sharma HC, Hariprasad KV. 2002. Flowering events in sorghum in relation to expression of resistance to sorghum midge, Stenodiplosis sorghicola. Euphytica 127(3):411−19

doi: 10.1023/A:1020387322539
[19]

Gupta A, Sood S, Agrawal P, Bhatt JC. 2012. Floral biology and pollination system in small millets. European Journal of Plant Science and Biotechnology 6(2):80−86

[20]

Yan W, Wang L, Xing Y. 2018. Rice field planting and hybridization method. Bio-101 2018:e1010181

doi: 10.21769/BioProtoc.1010181
[21]

Liu X, Gu M, Lv X, Sheng D, Wang X, et al. 2023. High temperature defense pathways mediate lodicule expansion and spikelet opening in maize tassels. Journal of Experimental Botany 74(12):3684−99

doi: 10.1093/jxb/erad115
[22]

Ishimaru T, Hlaing KT, Oo YM, Lwin TM, Sasaki K, et al. 2022. An early-morning flowering trait in rice can enhance grain yield under heat stress field conditions at flowering stage. Field Crops Research 277:108400

doi: 10.1016/j.fcr.2021.108400
[23]

Sun A, Somayanda I, Sebastian SV, Singh K, Gill K, et al. 2018. Heat stress during flowering affects time of day of flowering, seed set, and grain quality in spring wheat. Crop Science 58(1):380−92

doi: 10.2135/cropsci2017.04.0221
[24]

Wang Y. 2024. Effect of pollination time on fertilization and fruiting of maize at high temperature. Thesis. China Agricultural University, China

[25]

He YM, Lin YJ, Zeng XC. 2012. Dynamic changes of jasmonic acid biosynthesis in rice florets during natural anthesis. Acta Agronomica Sinica 38:1891−99

[26]

Wang M, Zhu X, Huang Z, Chen M, Xu P, et al. 2024. Controlling diurnal flower-opening time by manipulating the jasmonate pathway accelerates development of indica–japonica hybrid rice breeding. Plant Biotechnology Journal 22(8):2267−81

doi: 10.1111/pbi.14343
[27]

Zhu X, Wang M, Huang Z, Chen M, Xu P, et al. 2024. The OsMYC2-JA feedback loop regulates diurnal flower-opening time via cell wall loosening in rice. The Plant Journal 119(6):2585−98

doi: 10.1111/tpj.16910
[28]

Xu P, Wu T, Ali A, Zhang H, Liao Y, et al. 2022. EARLY MORNING FLOWERING1 (EMF1) regulates the floret opening time by mediating lodicule cell wall formation in rice. Plant Biotechnology Journal 20(8):1441−43

doi: 10.1111/pbi.13860
[29]

Liu L, Zou Z, Qian K, Xia C, He Y, et al. 2017. Jasmonic acid deficiency leads to scattered floret opening time in cytoplasmic male sterile rice Zhenshan 97A. Journal of Experimental Botany 68(16):4613−25

doi: 10.1093/jxb/erx251
[30]

Zhao ZX, Yin XX, Li S, Peng YT, Yan XL, et al. 2022. miR167d-ARFs module regulates flower opening and stigma size in rice. Rice 15(1):40

doi: 10.1186/s12284-022-00587-z
[31]

Gu M. 2023. Physiological mechanism of high temperature inhibiting male flower opening in maize. Thesis. China Agricultural University, China

[32]

Stelpflug SC, Sekhon RS, Vaillancourt B, Hirsch CN, Buell CR, et al. 2016. An expanded maize gene expression atlas based on RNA sequencing and its use to explore root development. The Plant Genome 9(1):1−16

doi: 10.3835/plantgenome2015.04.0025
[33]

Berdugo M, Delgado-Baquerizo M, Soliveres S, Hernández-Clemente R, Zhao Y, et al. 2020. Global ecosystem thresholds driven by aridity. Science 367(6479):787−90

doi: 10.1126/science.aay5958
[34]

Ren Z, Li C, Fu B, Wang S, Stringer LC. 2024. Effects of aridification on soil total carbon pools in China's drylands. Global Change Biology 30(1):e17091

doi: 10.1111/gcb.17091
[35]

Canty A, Ripley B. 2021. Package 'boot'. Reference manual available at R-CRAN. https://cran.r-project.org/web/packages/boot/boot.pdf

[36]

NOAA National Centers for Environmental Information. Monthly global climate report for annual 2023, published online January 2024, retrieved on June 8, 2024 from www.ncei.noaa.gov/access/monitoring/monthly-report/global/202313

[37]

He H, Hu Q, Li R, Pan X, Huang B, et al. 2020. Regional gap in maize production, climate and resource utilization in China. Field Crops Research 254:107830

doi: 10.1016/j.fcr.2020.107830
[38]

Dos Santos CL, Abendroth LJ, Coulter JA, Nafziger ED, Suyker A, et al. 2022. Maize leaf appearance rates: a synthesis from the United States corn belt. Frontiers in Plant Science 13:872738

doi: 10.3389/fpls.2022.872738
[39]

Lu M, Wu W, You L, See L, Fritz S, et al. 2020. A cultivated planet in 2010–part 1: the global synergy cropland map. Earth System Science Data 12(3):1913−28

doi: 10.5194/essd-12-1913-2020
[40]

Ong CK, Monteith JL. 1985. Response of pearl millet to light and temperature. Field Crops Research 11:141−60

doi: 10.1016/0378-4290(85)90098-X
[41]

Prasad PVV, Pisipati SR, Mutava RN, Tuinstra MR. 2008. Sensitivity of grain sorghum to high temperature stress during reproductive development. Crop Science 48(5):1911−17

doi: 10.2135/cropsci2008.01.0036
[42]

Nguyen CT, Singh V, van Oosterom EJ, Chapman SC, Jordan DR, et al. 2013. Genetic variability in high temperature effects on seed-set in sorghum. Functional Plant Biology 40(5):439−48

doi: 10.1071/FP12264
[43]

Sánchez B, Rasmussen A, Porter JR. 2014. Temperatures and the growth and development of maize and rice: a review. Global Change Biology 20(2):408−17

doi: 10.1111/gcb.12389
[44]

Singh P, Boote KJ, Kadiyala MDM, Nedumaran S, Gupta SK, et al. 2017. An assessment of yield gains under climate change due to genetic modification of pearl millet. Science of The Total Environment 601:1226−37

doi: 10.1016/j.scitotenv.2017.06.002
[45]

Djanaguiraman M, Vara Prasad PV, Murugan M, Perumal R, Reddy UK. 2014. Physiological differences among sorghum (Sorghum bicolor L. Moench) genotypes under high temperature stress. Environmental and Experimental Botany 100:43−54

doi: 10.1016/j.envexpbot.2013.11.013
[46]

Djanaguiraman M, Perumal R, Jagadish SVK, Ciampitti IA, Welti R, et al. 2018. Sensitivity of sorghum pollen and pistil to high-temperature stress. Plant, Cell & Environment 41(5):1065−82

doi: 10.1111/pce.13089
[47]

Djanaguiraman M, Perumal R, Ciampitti IA, Gupta SK, Prasad PVV. 2018. Quantifying pearl millet response to high temperature stress: thresholds, sensitive stages, genetic variability and relative sensitivity of pollen and pistil. Plant, Cell & Environment 41(5):993−1007

doi: 10.1111/pce.12931
[48]

Dicks LV, Breeze TD, Ngo HT, Senapathi D, An J, et al. 2021. A global-scale expert assessment of drivers and risks associated with pollinator decline. Nature Ecology & Evolution 5(10):1453−61

doi: 10.1038/s41559-021-01534-9
[49]

Rodger JG, Bennett JM, Razanajatovo M, Knight TM, van Kleunen M, et al. 2021. Widespread vulnerability of flowering plant seed production to pollinator declines. Science Advances 7(42):eabd3524

doi: 10.1126/sciadv.abd3524
[50]

Tollefson J. 2020. How hot will earth get by 2100? Nature 580(7804):443−45

doi: 10.1038/d41586-020-01125-x
[51]

McCulloch MT, Winter A, Sherman CE, Trotter JA. 2024. 300 years of sclerosponge thermometry shows global warming has exceeded 1.5 °C. Nature Climate Change 14(2):171−77

doi: 10.1038/s41558-023-01919-7
[52]

Thompson V, Mitchell D, Hegerl GC, Collins M, Leach NJ, et al. 2023. The most at-risk regions in the world for high-impact heatwaves. Nature Communications 14(1):2152

doi: 10.1038/s41467-023-37554-1
[53]

Ayyenar B, Kambale R, Duraialagaraja S, Manickam S, Mohanavel V, et al. 2023. Developing early morning flowering version of rice variety CO 51 to mitigate the heat-induced yield loss. Agriculture 13(3):553

doi: 10.3390/agriculture13030553
[54]

Deng R, Yan Z, Tang H, Zhu S. 2024. Revealing physiological basis for floret opening difference between indica and japonica rice: based on floral structure, transcriptome, and endogenous floret opening regulator. Genes 15(11):1396

doi: 10.3390/genes15111396
[55]

Bheemanahalli R, Sathishraj R, Manoharan M, Sumanth HN, Muthurajan R, et al. 2017. Is early morning flowering an effective trait to minimize heat stress damage during flowering in rice? Field Crops Research 203:238−42

doi: 10.1016/j.fcr.2016.11.011