[1]

USDA. 2022. National Agricultural Statistics Service Quick Stats database. https://quickstats.nass.usda.gov/

[2]

Department for Environment, Food & Rural Affairs (DEFRA). 2023. Horticulture statistics 2023. www.gov.uk/government/statistics/latest-horticulture-statistics

[3]

Pignata G, Ertani A, Casale M, Niñirola D, Egea-Gilabert C, et al. 2022. Understanding the postharvest phytochemical composition fates of packaged watercress (Nasturtium officinale R. Br.) grown in a floating system and treated with Bacillus subtilis as PGPR. Plants 11:589

doi: 10.3390/plants11050589
[4]

Gutiérrez-Velázquez MV, Almaraz-Abarca N, Herrera-Arrieta Y, Ávila-Reyes JA, González-Valdez LS, et al. 2018. Comparison of the phenolic contents and epigenetic and genetic variability of wild and cultivated watercress (Rorippa nasturtium var. aquaticum L.). Electronic Journal of Biotechnology 34:9−16

doi: 10.1016/j.ejbt.2018.04.005
[5]

Giallourou N, Oruna-Concha MJ, Harbourne N. 2016. Effects of domestic processing methods on the phytochemical content of watercress (Nasturtium officinale). Food Chemistry 212:411−19

doi: 10.1016/j.foodchem.2016.05.190
[6]

Klimek-Szczykutowicz M, Dziurka M, Blažević I, Đulović A, Apola A, et al. 2022. Impacts of elicitors on metabolite production and on antioxidant potential and tyrosinase inhibition in watercress microshoot cultures. Applied Microbiology and Biotechnology 106:619−33

doi: 10.1007/s00253-021-11743-8
[7]

Fimognari C, Turrini E, Ferruzzi L, Lenzi M, Hrelia P. 2012. Natural isothiocyanates: genotoxic potential versus chemoprevention. Mutation Research/Reviews in Mutation Research 750:107−31

doi: 10.1016/j.mrrev.2011.12.001
[8]

Garcia-Castellanos D, Estrada F, Jiménez-Munt I, Gorini C, Fernàndez M, et al. 2009. Catastrophic flood of the Mediterranean after the Messinian salinity crisis. Nature 462:778−81

doi: 10.1038/nature08555
[9]

Francis A, Lujan-Toro BE, Warwick SI, Macklin JA, Martin SL. 2021. Update on the Brassicaceae species checklist. Biodiversity Data Journal 9:e58773

doi: 10.3897/BDJ.9.e58773
[10]

The Arabidopsis Genome Initiative. 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796−815

doi: 10.1038/35048692
[11]

Moore MJ, Bell CD, Soltis PS, Soltis DE. 2007. Using plastid genome-scale data to resolve enigmatic relationships among basal angiosperms. Proceedings of the National Academy of Sciences of the United States of America 104:19363−68

doi: 10.1073/pnas.0708072104
[12]

Gan X, Hay A, Kwantes M, Haberer G, Hallab A, et al. 2016. The Cardamine hirsuta genome offers insight into the evolution of morphological diversity. Nature Plants 2:16167

doi: 10.1038/nplants.2016.167
[13]

Slotte T, Hazzouri KM, Ågren JA, Koenig D, Maumus F, et al. 2013. The Capsella rubella genome and the genomic consequences of rapid mating system evolution. Nature Genetics 45:831−35

doi: 10.1038/ng.2669
[14]

Kagale S, Robinson SJ, Nixon J, Xiao R, Huebert T, et al. 2014. Polyploid evolution of the Brassicaceae during the Cenozoic era. The Plant Cell 26:2777−91

doi: 10.1105/tpc.114.126391
[15]

Cheng F, Liang J, Cai C, Cai X, Wu J, et al. 2017. Genome sequencing supports a multi-vertex model for Brassiceae species. Current Opinion in Plant Biology 36:79−87

doi: 10.1016/j.pbi.2017.01.006
[16]

Sun D, Wang C, Zhang X, Zhang W, Jiang H, et al. 2019. Draft genome sequence of cauliflower (Brassica oleracea L. var. botrytis) provides new insights into the C genome in Brassica species. Horticulture Research 6:82

doi: 10.1038/s41438-019-0164-0
[17]

Wang D, Zheng Z, Li Y, Hu H, Wang Z, et al. 2021. Which factors contribute most to genome size variation within angiosperms? Ecology and Evolution 11:2660−68

doi: 10.1002/ece3.7222
[18]

Wei N, Cronn R, Liston A, Ashman TL. 2019. Functional trait divergence and trait plasticity confer polyploid advantage in heterogeneous environments. New Phytologist 221:2286−97

doi: 10.1111/nph.15508
[19]

Zhang L, Wu S, Chang X, Wang X, Zhao Y, et al. 2020. The ancient wave of polyploidization events in flowering plants and their facilitated adaptation to environmental stress. Plant, Cell & Environment 43:2847−56

doi: 10.1111/pce.13898
[20]

Chaisson MJ, Tesler G. 2012. Mapping single molecule sequencing reads using basic local alignment with successive refinement (BLASR): application and theory. BMC Bioinformatics 13:238

doi: 10.1186/1471-2105-13-238
[21]

Houtgast EJ, Sima VM, Bertels K, Al-Ars Z. 2018. Hardware acceleration of BWA-MEM genomic short read mapping for longer read lengths. Computational Biology and Chemistry 75:54−64

doi: 10.1016/j.compbiolchem.2018.03.024
[22]

Servant N, Varoquaux N, Lajoie BR, Viara E, Chen CJ, et al. 2015. HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biology 16:259

doi: 10.1186/s13059-015-0831-x
[23]

Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. 2015. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31:3210−12

doi: 10.1093/bioinformatics/btv351
[24]

Jia H, Wei H, Zhu D, Ma J, Yang H, et al. 2020. PASA: identifying more credible structural variants of Hedou12. IEEE/ACM Transactions on Computational Biology and Bioinformatics 17:1493−503

doi: 10.1109/TCBB.2019.2934463
[25]

Stanke M, Keller O, Gunduz I, Hayes A, Waack S, et al. 2006. AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Research 34:W435−W439

doi: 10.1093/nar/gkl200
[26]

Alioto T, Blanco E, Parra G, Guigó R. 2018. Using geneid to identify genes. Current Protocols in Bioinformatics 64:e56

doi: 10.1002/cpbi.56
[27]

Chan PP, Lowe TM. 2019. tRNAscan-SE: searching for tRNA genes in genomic sequences. In Gene Prediction, ed. Kollmar M. New York, NY: Humana. Volume 1962. pp. 1–14 doi: 10.1007/978-1-4939-9173-0_1

[28]

Lagesen K, Hallin P, Rødland EA, Stærfeldt HH, Rognes T, et al. 2007. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Research 35:3100−8

doi: 10.1093/nar/gkm160
[29]

Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. 2007. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Research 35:W182−W185

doi: 10.1093/nar/gkm321
[30]

Jones P, Binns D, Chang HY, Fraser M, Li W, et al. 2014. InterProScan 5: genome-scale protein function classification. Bioinformatics 30:1236−40

doi: 10.1093/bioinformatics/btu031
[31]

Servant F, Bru C, Carrère S, Courcelle E, Gouzy J, et al. 2002. ProDom: automated clustering of homologous domains. Briefings in Bioinformatics 3:246−51

doi: 10.1093/bib/3.3.246
[32]

Hulo N, Bairoch A, Bulliard V, Cerutti L, De Castro E, et al. 2006. The PROSITE database. Nucleic Acids Research 34:D227−D230

doi: 10.1093/nar/gkj063
[33]

Beier S, Thiel T, Münch T, Scholz U, Mascher M. 2017. MISA-web: a web server for microsatellite prediction. Bioinformatics 33:2583−85

doi: 10.1093/bioinformatics/btx198
[34]

Tarailo-Graovac M, Chen N. 2009. Using RepeatMasker to identify repetitive elements in genomic sequences. Current Protocols in Bioinformatics 25:4.10.1−4.10.14

doi: 10.1002/0471250953.bi0410s25
[35]

Li L, Stoeckert CJ Jr , Roos DS. 2003. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Research 13:2178−89

doi: 10.1101/gr.1224503
[36]

Sleator RD. 2016. JCVI-syn3.0–A synthetic genome stripped bare! Bioengineered 7:53−56

doi: 10.1080/21655979.2016.1175847
[37]

Potter SC, Luciani A, Eddy SR, Park Y, Lopez R, et al. 2018. HMMER web server: 2018 update. Nucleic Acids Research 46:W200−W204

doi: 10.1093/nar/gky448
[38]

Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30:772−80

doi: 10.1093/molbev/mst010
[39]

Price MN, Dehal PS, Arkin AP. 2009. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Molecular Biology and Evolution 26:1641−50

doi: 10.1093/molbev/msp077
[40]

Simillion C, Vandepoele K, Van Montagu MCE, Zabeau M, Van de Peer Y. 2002. The hidden duplication past of Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America 99:13627−32

doi: 10.1073/pnas.212522399
[41]

Karim R, Tan YS, Singh P, Khalid N, Harikrishna JA. 2018. Expression and DNA methylation of SERK, BBM, LEC2 and WUS genes in in vitro cultures of Boesenbergia rotunda (L.) Mansf. Physiology and Molecular Biology of Plants 24:741−51

doi: 10.1007/s12298-018-0566-8
[42]

Zhang J, Tian Y, Yan L, Zhang G, Wang X, et al. 2016. Genome of plant maca (Lepidium meyenii) illuminates genomic basis for high-altitude adaptation in the central Andes. Molecular Plant 9:1066−77

doi: 10.1016/j.molp.2016.04.016
[43]

Koyama T, Sato F, Ohme-Takagi M. 2017. Roles of miR319 and TCP transcription factors in leaf development. Plant Physiology 175:874−85

doi: 10.1104/pp.17.00732
[44]

Lan J, Qin G. 2020. The regulation of CIN-like TCP transcription factors. International Journal of Molecular Sciences 21:4498

doi: 10.3390/ijms21124498
[45]

Wang H, Niu H, Li C, Shen G, Liu X, et al. 2020. WUSCHEL-related homeobox1 (WOX1) regulates vein patterning and leaf size in Cucumis sativus. Horticulture Research 7:182

doi: 10.1038/s41438-020-00404-y
[46]

Yoshikawa T, Hisano H, Hibara KI, Nie J, Tanaka Y, et al. 2022. A bifurcated palea mutant infers functional differentiation of WOX3 genes in flower and leaf morphogenesis of barley. AoB Plants 14:plac019

doi: 10.1093/aobpla/plac019
[47]

Xu L, Fang N, Lu T, Tameshige T, Nakata MT, et al. 2024. WOX1 controls leaf serration development via temporally restricting BRASSINAZOLE RESISTANT 1 and CUP SHAPED COTYLEDON 3 expression in Arabidopsis. Journal of Experimental Botany 76:478−92

doi: 10.1093/jxb/erae443
[48]

Miguel VN, Manavella PA, Chan RL, Capella M. 2020. The AtHB1 transcription factor controls the miR164-CUC2 regulatory node to modulate leaf development. Plant and Cell Physiology 61:659−70

doi: 10.1093/pcp/pcz233
[49]

Koyama T, Furutani M, Tasaka M, Ohme-Takagi M. 2007. TCP transcription factors control the morphology of shoot lateral organs via negative regulation of the expression of boundary-specific genes in Arabidopsis. The Plant Cell 19:473−84

doi: 10.1105/tpc.106.044792
[50]

Wang H, Li K, Sun X, Xie Y, Han X, et al. 2019. Isolation and characterization of larch BABY BOOM2 and its regulation of adventitious root development. Gene 690:90−98

doi: 10.1016/j.gene.2018.12.049
[51]

Wei X, Geng M, Li J, Duan H, Li F, et al. 2022. GhWOX11 and GhWOX12 promote cell fate specification during embryogenesis. Industrial Crops and Products 184:115031

doi: 10.1016/j.indcrop.2022.115031
[52]

Waadt R, Seller CA, Hsu PK, Takahashi Y, Munemasa S, et al. 2022. Plant hormone regulation of abiotic stress responses. Nature Reviews Molecular Cell Biology 23:680−94

doi: 10.1038/s41580-022-00479-6
[53]

Wang J, Han M, Huang Y, Zhao J, Liu C, et al. 2024. Flooding tolerance of rice: regulatory pathways and adaptive mechanisms. Plants 13:1178

doi: 10.3390/plants13091178
[54]

Ding Q, Ran J, Chen X, Gao Z, Qian X, et al. 2024. Identification of the NAC family and a functional analysis of NoNAC36a under flooding stress in watercress (Nasturtium officinale R.Br.). Horticulturae 10:1219

doi: 10.3390/horticulturae10111219
[55]

Jung J, Lee SC, Choi HK. 2008. Anatomical patterns of aerenchyma in aquatic and wetland plants. Journal of Plant Biology 51:428−39

doi: 10.1007/BF03036065
[56]

Hibbert L, Taylor G. 2022. Improving phosphate use efficiency in the aquatic crop watercress (Nasturtium officinale). Horticulture Research 9:uhac011

[57]

Feng X, Chen Q, Wu W, Wang J, Li G, et al. 2024. Genomic evidence for rediploidization and adaptive evolution following the whole-genome triplication. Nature Communications 15:1635

doi: 10.1038/s41467-024-46080-7
[58]

Baillo EH, Kimotho RN, Zhang Z, Xu P. 2019. Transcription factors associated with abiotic and biotic stress tolerance and their potential for crops improvement. Genes 10:771

doi: 10.3390/genes10100771
[59]

Sauerbrunn N, Schlaich NL. 2004. PCC1: a merging point for pathogen defence and circadian signalling in Arabidopsis. Planta 218:552−61

doi: 10.1007/s00425-003-1143-z
[60]

Kandeel M, Morsy MA, Abd El-Lateef HM, Marzok M, El-Beltagi HS, et al. 2023. Genome-wide identification of B3 DNA-binding superfamily members (ABI, HIS, ARF, RVL, REM) and their involvement in stress responses and development in Camelina sativa. Agronomy 13:648

doi: 10.3390/agronomy13030648