| [1] |
USDA. 2022. National Agricultural Statistics Service Quick Stats database. https://quickstats.nass.usda.gov/ |
| [2] |
Department for Environment, Food & Rural Affairs (DEFRA). 2023. Horticulture statistics 2023. www.gov.uk/government/statistics/latest-horticulture-statistics |
| [3] |
Pignata G, Ertani A, Casale M, Niñirola D, Egea-Gilabert C, et al. 2022. Understanding the postharvest phytochemical composition fates of packaged watercress (Nasturtium officinale R. Br.) grown in a floating system and treated with Bacillus subtilis as PGPR. |
| [4] |
Gutiérrez-Velázquez MV, Almaraz-Abarca N, Herrera-Arrieta Y, Ávila-Reyes JA, González-Valdez LS, et al. 2018. Comparison of the phenolic contents and epigenetic and genetic variability of wild and cultivated watercress (Rorippa nasturtium var. aquaticum L.). |
| [5] |
Giallourou N, Oruna-Concha MJ, Harbourne N. 2016. Effects of domestic processing methods on the phytochemical content of watercress (Nasturtium officinale). |
| [6] |
Klimek-Szczykutowicz M, Dziurka M, Blažević I, Đulović A, Apola A, et al. 2022. Impacts of elicitors on metabolite production and on antioxidant potential and tyrosinase inhibition in watercress microshoot cultures. |
| [7] |
Fimognari C, Turrini E, Ferruzzi L, Lenzi M, Hrelia P. 2012. Natural isothiocyanates: genotoxic potential versus chemoprevention. |
| [8] |
Garcia-Castellanos D, Estrada F, Jiménez-Munt I, Gorini C, Fernàndez M, et al. 2009. Catastrophic flood of the Mediterranean after the Messinian salinity crisis. |
| [9] |
Francis A, Lujan-Toro BE, Warwick SI, Macklin JA, Martin SL. 2021. Update on the Brassicaceae species checklist. |
| [10] |
The Arabidopsis Genome Initiative. 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. |
| [11] |
Moore MJ, Bell CD, Soltis PS, Soltis DE. 2007. Using plastid genome-scale data to resolve enigmatic relationships among basal angiosperms. |
| [12] |
Gan X, Hay A, Kwantes M, Haberer G, Hallab A, et al. 2016. The Cardamine hirsuta genome offers insight into the evolution of morphological diversity. |
| [13] |
Slotte T, Hazzouri KM, Ågren JA, Koenig D, Maumus F, et al. 2013. The Capsella rubella genome and the genomic consequences of rapid mating system evolution. |
| [14] |
Kagale S, Robinson SJ, Nixon J, Xiao R, Huebert T, et al. 2014. Polyploid evolution of the Brassicaceae during the Cenozoic era. |
| [15] |
Cheng F, Liang J, Cai C, Cai X, Wu J, et al. 2017. Genome sequencing supports a multi-vertex model for Brassiceae species. |
| [16] |
Sun D, Wang C, Zhang X, Zhang W, Jiang H, et al. 2019. Draft genome sequence of cauliflower (Brassica oleracea L. var. botrytis) provides new insights into the C genome in Brassica species. |
| [17] |
Wang D, Zheng Z, Li Y, Hu H, Wang Z, et al. 2021. Which factors contribute most to genome size variation within angiosperms? |
| [18] |
Wei N, Cronn R, Liston A, Ashman TL. 2019. Functional trait divergence and trait plasticity confer polyploid advantage in heterogeneous environments. |
| [19] |
Zhang L, Wu S, Chang X, Wang X, Zhao Y, et al. 2020. The ancient wave of polyploidization events in flowering plants and their facilitated adaptation to environmental stress. |
| [20] |
Chaisson MJ, Tesler G. 2012. Mapping single molecule sequencing reads using basic local alignment with successive refinement (BLASR): application and theory. |
| [21] |
Houtgast EJ, Sima VM, Bertels K, Al-Ars Z. 2018. Hardware acceleration of BWA-MEM genomic short read mapping for longer read lengths. |
| [22] |
Servant N, Varoquaux N, Lajoie BR, Viara E, Chen CJ, et al. 2015. HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. |
| [23] |
Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. 2015. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. |
| [24] |
Jia H, Wei H, Zhu D, Ma J, Yang H, et al. 2020. PASA: identifying more credible structural variants of Hedou12. |
| [25] |
Stanke M, Keller O, Gunduz I, Hayes A, Waack S, et al. 2006. AUGUSTUS: ab initio prediction of alternative transcripts. |
| [26] |
Alioto T, Blanco E, Parra G, Guigó R. 2018. Using geneid to identify genes. |
| [27] |
Chan PP, Lowe TM. 2019. tRNAscan-SE: searching for tRNA genes in genomic sequences. In Gene Prediction, ed. Kollmar M. New York, NY: Humana. Volume 1962. pp. 1–14 doi: 10.1007/978-1-4939-9173-0_1 |
| [28] |
Lagesen K, Hallin P, Rødland EA, Stærfeldt HH, Rognes T, et al. 2007. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. |
| [29] |
Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. 2007. KAAS: an automatic genome annotation and pathway reconstruction server. |
| [30] |
Jones P, Binns D, Chang HY, Fraser M, Li W, et al. 2014. InterProScan 5: genome-scale protein function classification. |
| [31] |
Servant F, Bru C, Carrère S, Courcelle E, Gouzy J, et al. 2002. ProDom: automated clustering of homologous domains. |
| [32] |
Hulo N, Bairoch A, Bulliard V, Cerutti L, De Castro E, et al. 2006. The PROSITE database. |
| [33] |
Beier S, Thiel T, Münch T, Scholz U, Mascher M. 2017. MISA-web: a web server for microsatellite prediction. |
| [34] |
Tarailo-Graovac M, Chen N. 2009. Using RepeatMasker to identify repetitive elements in genomic sequences. |
| [35] |
Li L, Stoeckert CJ Jr , Roos DS. 2003. OrthoMCL: identification of ortholog groups for eukaryotic genomes. |
| [36] |
Sleator RD. 2016. JCVI-syn3.0–A synthetic genome stripped bare! |
| [37] |
Potter SC, Luciani A, Eddy SR, Park Y, Lopez R, et al. 2018. HMMER web server: 2018 update. |
| [38] |
Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. |
| [39] |
Price MN, Dehal PS, Arkin AP. 2009. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. |
| [40] |
Simillion C, Vandepoele K, Van Montagu MCE, Zabeau M, Van de Peer Y. 2002. The hidden duplication past of Arabidopsis thaliana. |
| [41] |
Karim R, Tan YS, Singh P, Khalid N, Harikrishna JA. 2018. Expression and DNA methylation of SERK, BBM, LEC2 and WUS genes in in vitro cultures of Boesenbergia rotunda (L.) Mansf. |
| [42] |
Zhang J, Tian Y, Yan L, Zhang G, Wang X, et al. 2016. Genome of plant maca (Lepidium meyenii) illuminates genomic basis for high-altitude adaptation in the central Andes. |
| [43] |
Koyama T, Sato F, Ohme-Takagi M. 2017. Roles of miR319 and TCP transcription factors in leaf development. |
| [44] |
Lan J, Qin G. 2020. The regulation of CIN-like TCP transcription factors. |
| [45] |
Wang H, Niu H, Li C, Shen G, Liu X, et al. 2020. WUSCHEL-related homeobox1 (WOX1) regulates vein patterning and leaf size in Cucumis sativus. |
| [46] |
Yoshikawa T, Hisano H, Hibara KI, Nie J, Tanaka Y, et al. 2022. A bifurcated palea mutant infers functional differentiation of WOX3 genes in flower and leaf morphogenesis of barley. |
| [47] |
Xu L, Fang N, Lu T, Tameshige T, Nakata MT, et al. 2024. WOX1 controls leaf serration development via temporally restricting BRASSINAZOLE RESISTANT 1 and CUP SHAPED COTYLEDON 3 expression in Arabidopsis. |
| [48] |
Miguel VN, Manavella PA, Chan RL, Capella M. 2020. The AtHB1 transcription factor controls the miR164-CUC2 regulatory node to modulate leaf development. |
| [49] |
Koyama T, Furutani M, Tasaka M, Ohme-Takagi M. 2007. TCP transcription factors control the morphology of shoot lateral organs via negative regulation of the expression of boundary-specific genes in Arabidopsis. |
| [50] |
Wang H, Li K, Sun X, Xie Y, Han X, et al. 2019. Isolation and characterization of larch BABY BOOM2 and its regulation of adventitious root development. |
| [51] |
Wei X, Geng M, Li J, Duan H, Li F, et al. 2022. GhWOX11 and GhWOX12 promote cell fate specification during embryogenesis. |
| [52] |
Waadt R, Seller CA, Hsu PK, Takahashi Y, Munemasa S, et al. 2022. Plant hormone regulation of abiotic stress responses. |
| [53] |
Wang J, Han M, Huang Y, Zhao J, Liu C, et al. 2024. Flooding tolerance of rice: regulatory pathways and adaptive mechanisms. |
| [54] |
Ding Q, Ran J, Chen X, Gao Z, Qian X, et al. 2024. Identification of the NAC family and a functional analysis of NoNAC36a under flooding stress in watercress (Nasturtium officinale R.Br.). |
| [55] |
Jung J, Lee SC, Choi HK. 2008. Anatomical patterns of aerenchyma in aquatic and wetland plants. |
| [56] |
Hibbert L, Taylor G. 2022. Improving phosphate use efficiency in the aquatic crop watercress (Nasturtium officinale). Horticulture Research 9:uhac011 |
| [57] |
Feng X, Chen Q, Wu W, Wang J, Li G, et al. 2024. Genomic evidence for rediploidization and adaptive evolution following the whole-genome triplication. |
| [58] |
Baillo EH, Kimotho RN, Zhang Z, Xu P. 2019. Transcription factors associated with abiotic and biotic stress tolerance and their potential for crops improvement. |
| [59] |
Sauerbrunn N, Schlaich NL. 2004. PCC1: a merging point for pathogen defence and circadian signalling in Arabidopsis. |
| [60] |
Kandeel M, Morsy MA, Abd El-Lateef HM, Marzok M, El-Beltagi HS, et al. 2023. Genome-wide identification of B3 DNA-binding superfamily members (ABI, HIS, ARF, RVL, REM) and their involvement in stress responses and development in Camelina sativa. |