[1]

Nakielska M, Berbeć AK, Madej A, Feledyn-Szewczyk B. 2024. Microbial fertilizing products impact on productivity and profitability of organic strawberry cultivars. Horticulturae 10:1112

doi: 10.3390/horticulturae10101112
[2]

Miserendino EE, Arena M, Portela JA. 2009. Yield and fruit quality assessment of day-neutral strawberry cultivars at the end of the world (Ushuaia, Argentina). Acta Horticulturae 842:919−22

doi: 10.17660/actahortic.2009.842.203
[3]

Zhang Y, Feng Y, Yang S, Qiao H, Wu A, et al. 2023. Identification of flavanone 3-hydroxylase gene family in strawberry and expression analysis of fruit at different coloring stages. International Journal of Molecular Sciences 24:16807

doi: 10.3390/ijms242316807
[4]

Martens M. 1984. Quality and quality evaluation. Acta Horticulturae 163:15−30

doi: 10.17660/ActaHortic.1984.163.1
[5]

Stracke R, Werber M, Weisshaar B. 2001. The R2R3-MYB gene family in Arabidopsis thaliana. Current Opinion in Plant Biology 4:447−56

doi: 10.1016/S1369-5266(00)00199-0
[6]

Ramsay NA, Glover BJ. 2005. MYB–bHLH–WD40 protein complex and the evolution of cellular diversity. Trends in Plant Science 10:63−70

doi: 10.1016/j.tplants.2004.12.011
[7]

Roy S. 2016. Function of MYB domain transcription factors in abiotic stress and epigenetic control of stress response in plant genome. Plant Signaling & Behavior 11:e1117723

doi: 10.1080/15592324.2015.1117723
[8]

Seo MS, Kim JS. 2017. Understanding of MYB transcription factors involved in glucosinolate biosynthesis in Brassicaceae. Molecules 22:1549

doi: 10.3390/molecules22091549
[9]

Jia L, Clegg MT, Jiang T. 2004. Evolutionary dynamics of the DNA-binding domains in putative R2R3-MYB genes identified from rice subspecies indica and japonica genomes. Plant Physiology 134:575−85

doi: 10.1104/pp.103.027201
[10]

Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, et al. 2010. MYB transcription factors in Arabidopsis. Trends in Plant Science 15:573−81

doi: 10.1016/j.tplants.2010.06.005
[11]

Albert NW, Griffiths AG, Cousins GR, Verry IM, Williams WM. 2015. Anthocyanin leaf markings are regulated by a family of R2R3-MYB genes in the genus Trifolium. New Phytologist 205:882−93

doi: 10.1111/nph.13100
[12]

Jung C, Seo JS, Han SW, Koo YJ, Kim CH, et al. 2008. Overexpression of AtMYB44 enhances stomatal closure to confer abiotic stress tolerance in transgenic Arabidopsis. Plant Physiology 146:623−24

doi: 10.1104/pp.107.110981
[13]

Zhou X, Zha M, Huang J, Li L, Imran M, et al. 2017. StMYB44 negatively regulates phosphate transport by suppressing expression of PHOSPHATE1 in potato. Journal of Experimental Botany 68(5):1265−81

doi: 10.1093/jxb/erx026
[14]

Leng X, Li C, Wang P, Ren Y, Chen J, et al. 2025. The transcription factor VvMYB44-1 plays a role in reducing grapevine anthocyanin biosynthesis at high temperature. Plant Physiology 197:kiae657

doi: 10.1093/plphys/kiae657
[15]

Wei L, Mao W, Jia M, Xing S, Ali U, et al. 2018. FaMYB44.2, a transcriptional repressor, negatively regulates sucrose accumulation in strawberry receptacles through interplay with FaMYB10. Journal of Experimental Botany 69:4805−20

doi: 10.1093/jxb/ery249
[16]

Wang P, Gu M, Yu X, Shao S, Du J, et al. 2022. Allele-specific expression and chromatin accessibility contribute to heterosis in tea plants (Camellia sinensis). The Plant Journal 112:1194−211

doi: 10.1111/tpj.16004
[17]

Li X, Martín-Pizarro C, Zhou L, Hou B, Wang Y, et al. 2023. Deciphering the regulatory network of the NAC transcription factor FvRIF, a key regulator of strawberry (Fragaria vesca) fruit ripening. The Plant Cell 35:4020−45

doi: 10.1093/plcell/koad210
[18]

Yu JQ, Li ZT, Chen S, Gao HS, Sheng LX. 2024. Analysis of ethylene signal regulating sucrose metabolism in strawberry fruits based on RNA-seq. Plants 13:1121

doi: 10.3390/plants13081121
[19]

Yu JQ, Ji FY, Yang XK, Cheng Y, Gao HS, et al. 2024. A genome-wide investigation of the mechanism underlying the effect of exogenous boron application on sugar content and overall quality of "Benihoppe" strawberries. Plant Physiology and Biochemistry 216:109116

doi: 10.1016/j.plaphy.2024.109116
[20]

Fang L, Wei K, Feng L, Tu K, Peng J, et al. 2020. Optical absorption and scattering properties at 900–1650 nm and their relationships with soluble solid content and soluble sugars in apple flesh during storage. Foods 9:1881

doi: 10.3390/foods9121881
[21]

Wang N, Gao J, Liu Y, Shi R, Chen S. 2022. Identification of crucial factors involved in Cynoglossus semilaevis sexual size dimorphism by GWAS and demonstration of zbed1 regulatory network by DAP-seq. Genomics 114:110376

doi: 10.1016/j.ygeno.2022.110376
[22]

Xu Y, Ji X, Xu Z, Yuan Y, Chen X, et al. 2022. Transcriptome profiling reveals a Petunia transcription factor, PhCOL4, contributing to antiviral RNA silencing. Frontiers in Plant Science 13:876428

doi: 10.3389/fpls.2022.876428
[23]

Liu X, Huang Q, Liang Y, Lu Z, Liu W, et al. 2024. Genome-wide identification and expression analysis of 'NanGuo' pear revealed key MYB transcription factor family genes involved in anthocyanin accumulation. Horticulturae 10:989

doi: 10.3390/horticulturae10090989
[24]

An JP, Wang XF, Zhang XW, Xu HF, Bi SQ, et al. 2020. An apple MYB transcription factor regulates cold tolerance and anthocyanin accumulation and undergoes MIEL1-mediated degradation. Plant Biotechnology Journal 18:337−53

doi: 10.1111/pbi.13201
[25]

Zhang Z, Shi Y, Ma Y, Yang X, Yin X, et al. 2020. The strawberry transcription factor FaRAV1 positively regulates anthocyanin accumulation by activation of FaMYB10 and anthocyanin pathway genes. Plant Biotechnology Journal 18:2267−79

doi: 10.1111/pbi.13382
[26]

Chen YS, Chao YC, Tseng TW, Huang CK, Lo PC, et al. 2017. Two MYB-related transcription factors play opposite roles in sugar signaling in Arabidopsis. Plant Molecular Biology 93:299−311

doi: 10.1007/s11103-016-0562-8
[27]

Yuan Y, Yang X, Feng M, Ding H, Khan MT, et al. 2021. Genome-wide analysis of R2R3-MYB transcription factors family in the autopolyploid Saccharum spontaneum: an exploration of dominance expression and stress response. BMC Genomics 22:622

doi: 10.1186/s12864-021-07689-w
[28]

Liu Y, Zhu L, Yang M, Xie X, Sun P, et al. 2022. R2R3-MYB transcription factor FaMYB5 is involved in citric acid metabolism in strawberry fruits. Journal of Plant Physiology 277:153789

doi: 10.1016/j.jplph.2022.153789
[29]

Wang TT, Song X, Zhang M, Fan YJ, Ren J, et al. 2025. CsCPC, an R3-MYB transcription factor, acts as a negative regulator of citric acid accumulation in Citrus. The Plant Journal 121:e17189

doi: 10.1111/tpj.17189
[30]

Wang W, Bian J, Cui Y, Guo H, He L, et al. 2024. Determination of the regulatory network of two bZIP transcription factors, AhHYH and AhHY5, in light signal regulation in peanut by DAP-seq. Current Plant Biology 38:100352

doi: 10.1016/j.cpb.2024.100352