[1]

Sun J, Huang D, Xia S, Zhang Y, Tao J. 2024. Research progress of woody oil crops in China: a review. Seed Biology 3:e008

doi: 10.48130/seedbio-0024-0006
[2]

Zhao J, He Y, Zhang H, Wang Z. 2024. Advances in the molecular regulation of seed germination in plants. Seed Biology 3:e006

doi: 10.48130/seedbio-0024-0005
[3]

Thiam AR, Ikonen E. 2021. Lipid droplet nucleation. Trends in Cell Biology 31:108−18

doi: 10.1016/j.tcb.2020.11.006
[4]

Kory N, Farese RV, Walther TC. 2016. Targeting fat: mechanisms of protein localization to lipid droplets. Trends in Cell Biology 26:535−46

doi: 10.1016/j.tcb.2016.02.007
[5]

Li-Beisson Y, Shorrosh B, Beisson F, Andersson MX, Arondel V, et al. 2013. Acyl-lipid metabolism. The Arabidopsis Book 11:e0161

doi: 10.1199/tab.0161
[6]

Zadoorian A, Du X, Yang H. 2023. Lipid droplet biogenesis and functions in health and disease. Nature Reviews Endocrinology 19:443−59

doi: 10.1038/s41574-023-00845-0
[7]

Ben M'barek K, Ajjaji D, Chorlay A, Vanni S, Forêt L, et al. 2017. ER membrane phospholipids and surface tension control cellular lipid droplet formation. Developmental Cell 41:591−604.e7

doi: 10.1016/j.devcel.2017.05.012
[8]

Choudhary V, Golani G, Joshi AS, Cottier S, Schneiter R, et al. 2018. Architecture of lipid droplets in endoplasmic reticulum is determined by phospholipid intrinsic curvature. Current Biology 28:915−26.e9

doi: 10.1016/j.cub.2018.02.020
[9]

Gao M, Huang X, Song BL, Yang H. 2019. The biogenesis of lipid droplets: lipids take center stage. Progress in Lipid Research 75:100989

doi: 10.1016/j.plipres.2019.100989
[10]

Salo VT, Li S, Vihinen H, Hölttä-Vuori M, Szkalisity A, et al. 2019. Seipin facilitates triglyceride flow to lipid droplet and counteracts droplet ripening via endoplasmic reticulum contact. Developmental Cell 50:478−93.e9

doi: 10.1016/j.devcel.2019.05.016
[11]

Becuwe M, Bond LM, Pinto AFM, Boland S, Mejhert N, et al. 2020. FIT2 is an acyl–coenzyme A diphosphatase crucial for endoplasmic reticulum homeostasis. Journal of Cell Biology 219:e202006111

doi: 10.1083/jcb.202006111
[12]

Torres-Romero I, Légeret B, Bertrand M, Sorigue D, Damm A, et al. 2024. The α/β hydrolase domain-containing protein 1 (ABHD1) acts as a lysolipid lipase and is involved in lipid droplet formation. National Science Review 11:nwae398

doi: 10.1093/nsr/nwae398
[13]

Yang Z, Zhang M, Du C. 2025. A novel mechanism promoting lipid droplet formation. Trends in Plant Science 30:347−49

doi: 10.1016/j.tplants.2024.12.010
[14]

Lyu X, Wang J, Wang J, Yin YS, Zhu Y, et al. 2021. A gel-like condensation of Cidec generates lipid-permeable plates for lipid droplet fusion. Developmental Cell 56:2592−606.e7

doi: 10.1016/j.devcel.2021.08.015
[15]

Kumar N, Leonzino M, Hancock-Cerutti W, Horenkamp FA, Li P, et al. 2018. VPS13A and VPS13C are lipid transport proteins differentially localized at ER contact sites. Journal of Cell Biology 217:3625−39

doi: 10.1083/jcb.201807019
[16]

Song J, Mizrak A, Lee CW, Cicconet M, Lai ZW, Tang WC, et al. 2022. Identification of two pathways mediating protein targeting from ER to lipid droplets. Nature Cell Biology 24:1364−77

doi: 10.1038/s41556-022-00974-0
[17]

Liu X, Yang Z, Wang Y, Shen Y, Jia Q, et al. 2022. Multiple caleosins have overlapping functions in oil accumulation and embryo development. Journal of Experimental Botany 73:3946−62

doi: 10.1093/jxb/erac153
[18]

Price AM, Doner NM, Gidda SK, Jambunathan S, James CN, et al. 2020. Mouse Fat-Specific Protein 27 (FSP27) expressed in plant cells localizes to lipid droplets and promotes lipid droplet accumulation and fusion. Biochimie 169:41−53

doi: 10.1016/j.biochi.2019.08.002
[19]

Weselake RJ, Fell DA, Wang X, Scofield S, Chen G, et al. 2024. Increasing oil content in Brassica oilseed species. Progress in Lipid Research 96:101306

doi: 10.1016/j.plipres.2024.101306
[20]

Woodfield HK, Fenyk S, Wallington E, Bates RE, Brown A, et al. 2019. Increase in lysophosphatidate acyltransferase activity in oilseed rape (Brassica napus) increases seed triacylglycerol content despite its low intrinsic flux control coefficient. New Phytologist 224:700−11

doi: 10.1111/nph.16100
[21]

Zhu K, Li N, Zheng X, Sarwar R, Li Y, et al. 2023. Overexpression the BnLACS9 could increase the chlorophyll and oil content in Brassica napus. Biotechnology for Biofuels and Bioproducts 16:3

doi: 10.1186/s13068-022-02254-3
[22]

Xu J, Francis T, Mietkiewska E, Giblin EM, Barton DL, et al. 2008. Cloning and characterization of an acyl-CoA-dependent diacylglycerol acyltransferase 1 (DGAT1) gene from Tropaeolum majus, and a study of the functional motifs of the DGAT protein using site-directed mutagenesis to modify enzyme activity and oil content. Plant Biotechnology Journal 6:799−818

doi: 10.1111/j.1467-7652.2008.00358.x
[23]

Li N, Huang Y, Zhao Y, Yang Z, Jia Q, et al. 2024. Lipidomics studies reveal dynamic changes in polar lipids of developing endosperm of oat and wheat varieties with differing oil contents. Food Chemistry 444:138597

doi: 10.1016/j.foodchem.2024.138597
[24]

Cai Y, Goodman JM, Pyc M, Mullen RT, Dyer JM, et al. 2015. Arabidopsis SEIPIN proteins modulate triacylglycerol accumulation and influence lipid droplet proliferation. The Plant Cell 27:2616−36

doi: 10.1105/tpc.15.00588
[25]

Cai Y, McClinchie E, Price A, Nguyen TN, Gidda SK, et al. 2017. Mouse fat storage-inducing transmembrane protein 2 (FIT2) promotes lipid droplet accumulation in plants. Plant Biotechnology Journal 15:824−36

doi: 10.1111/pbi.12678
[26]

Xiong Y, Sun C, Xiang Y, Li Y, Guo L, et al. 2025. Cell death-inducing DNA fragmentation factor alpha (DFFA)-like effectors (CIDEs) improve lipid droplet (LD) formation and oil accumulation in plant tissues. Plant Biotechnology Journal Early View

doi: 10.1111/pbi.70152
[27]

Anaokar S, Liang Y, Yu XH, Cai Y, Cai Y, et al. 2024. The expression of genes encoding novel Sesame oleosin variants facilitates enhanced triacylglycerol accumulation in Arabidopsis leaves and seeds. New Phytologist 243:271−83

doi: 10.1111/nph.19548
[28]

Lunn D, Wallis JG, Browse J. 2018. Overexpression of Seipin1 increases oil in hydroxy fatty acid-accumulating seeds. Plant and Cell Physiology 59:205−14

doi: 10.1093/pcp/pcx177
[29]

Yang Z, Chen Y, Ma S, Zhang M, Tang T, et al. 2025. Bioengineering of long-chain polyunsaturated fatty acids in oilseed crops. Progress in Lipid Research 99:101333

doi: 10.1016/j.plipres.2025.101333
[30]

Caldo KMP, Shen W, Xu Y, Hanley-Bowdoin L, Chen G, et al. 2018. Diacylglycerol acyltransferase 1 is activated by phosphatidate and inhibited by SnRK1-catalyzed phosphorylation. The Plant Journal 96:287−99

doi: 10.1111/tpj.14029
[31]

Wilfling F, Wang H, Haas JT, Krahmer N, Gould TJ, et al. 2013. Triacylglycerol synthesis enzymes mediate lipid droplet growth by relocalizing from the ER to lipid droplets. Developmental Cell 24:384−99

doi: 10.1016/j.devcel.2013.01.013
[32]

Lu Y, Chi M, Li L, Li H, Noman M, et al. 2018. Genome-wide identification, expression profiling, and functional validation of oleosin gene family in Carthamus tinctorius L. Frontiers in Plant Science 9:1393

doi: 10.3389/fpls.2018.01393
[33]

Chen K, Yin Y, Liu S, Guo Z, Zhang K, et al. 2019. Genome-wide identification and functional analysis of oleosin genes in Brassica napus L. BMC Plant Biology 19:294

doi: 10.1186/s12870-019-1891-y
[34]

Gidda SK, Park S, Pyc M, Yurchenko O, Cai Y, et al. 2016. Lipid droplet-associated proteins (LDAPs) are required for the dynamic regulation of neutral lipid compartmentation in plant cells. Plant Physiology 170:2052−71

doi: 10.1104/pp.15.01977
[35]

Islam N, Krishnan HB, Slovin J, Li Z, Fakir T, Luthria D, et al. 2025. High-resolution mass spectrometry approach for proteomic and metabolomic analyses of high-protein soybean seeds. Journal of Agricultural and Food Chemistry 73:6993−7002

doi: 10.1021/acs.jafc.5c00375
[36]

Feng L, Zhou J, Zhu D, Gao C. 2024. TurboID-based proximity labeling accelerates discovery of neighboring proteins in plants. Trends in Plant Science 29:383−84

doi: 10.1016/j.tplants.2023.10.011
[37]

Guffick C, Politis A. 2025. HDX-MS in micelles and membranes for small molecule and biopharmaceutical development. Current Opinion in Structural Biology 94:103077

doi: 10.1016/j.sbi.2025.103077
[38]

Majumder P, Zhang P. 2025. In situ cryo-electron microscopy and tomography of cellular and organismal samples. Current Opinion in Structural Biology 93:103076

doi: 10.1016/j.sbi.2025.103076
[39]

Pyc M, Cai Y, Gidda SK, Yurchenko O, Park S, et al. 2017. Arabidopsis lipid droplet-associated protein (LDAP) – interacting protein (LDIP) influences lipid droplet size and neutral lipid homeostasis in both leaves and seeds. The Plant Journal 92:1182−201

doi: 10.1111/tpj.13754
[40]

Strom JM, Luck K. 2025. Bias in, bias out – AlphaFold-Multimer and the structural complexity of protein interfaces. Current Opinion in Structural Biology 91:103002

doi: 10.1016/j.sbi.2025.103002