[1]

Sharma A, Patni B, Shankhdhar D, Shankhdhar SC. 2013. Zinc – an indispensable micronutrient. Physiology and Molecular Biology of Plants 19(1):11−20

doi: 10.1007/s12298-012-0139-1
[2]

Natasha N, Shahid M, Bibi I, Iqbal J, Khalid S, et al. 2022. Zinc in soil-plant-human system: a data-analysis review. Science of The Total Environment 808:152024

doi: 10.1016/j.scitotenv.2021.152024
[3]

Kaur H, Garg N. 2021. Zinc toxicity in plants: a review. Planta 253:129

doi: 10.1007/s00425-021-03642-z
[4]

Kumar YP, King P, Prasad VSRK. 2006. Zinc biosorption on Tectona grandis L. f. leaves biomass: equilibrium and kinetic studies. Chemical Engineering Journal 124:63−70

doi: 10.1016/j.cej.2006.07.010
[5]

Cesur H, Balkaya N. 2007. Zinc removal from aqueous solution using an industrial by-product phosphogypsum. Chemical Engineering Journal 131:203−8

doi: 10.1016/j.cej.2006.11.010
[6]

Mishra V, Balomajumder C, Agarwal VK. 2010. Zn(II) ion biosorption onto surface of Eucalyptus leaf biomass: isotherm, kinetic, and mechanistic modeling. CLEAN – Soil, Air, Water 38:1062−73

doi: 10.1002/clen.201000030
[7]

Hussain S, Khan M, Sheikh TMM, Mumtaz MZ, Chohan TA, et al. 2022. Zinc essentiality, toxicity, and its bacterial bioremediation: a comprehensive insight. Frontiers in Microbiology 13:900740

doi: 10.3389/fmicb.2022.900740
[8]

Mishra PC, Patel RK. 2009. Removal of lead and zinc ions from water by low cost adsorbents. Journal of Hazardous Materials 168:319−25

doi: 10.1016/j.jhazmat.2009.02.026
[9]

Mohan D, Singh KP. 2002. Single- and multi-component adsorption of cadmium and zinc using activated carbon derived from bagasse − an agricultural waste. Water Research 36:2304−18

doi: 10.1016/S0043-1354(01)00447-X
[10]

Srivastava VC, Mall ID, Mishra IM. 2007. Adsorption thermodynamics and isosteric heat of adsorption of toxic metal ions onto bagasse fly ash (BFA) and rice husk ash (RHA). Chemical Engineering Journal 132:267−78

doi: 10.1016/j.cej.2007.01.007
[11]

Srivastava S, Thakur IS. 2006. Biosorption potency of Aspergillus niger for removal of chromium (VI). Current Microbiology 53:232−37

doi: 10.1007/s00284-006-0103-9
[12]

Naiya TK, Chowdhury P, Bhattacharya AK, Das SK. 2009. Saw dust and neem bark as low cost natural biosorbent for adsorptive removal of Zn(II) and Cd(II) ions from aqueous solutions. Chemical Engineering Journal 148:68−79

doi: 10.1016/j.cej.2008.08.002
[13]

Zuhara S, McKay G. 2023. PCB-waste derived resin as a binary ion exchanger for zinc removal: isotherm modelling and adsorbent optimization. Chemical Papers 77:4843−57

doi: 10.1007/s11696-023-02823-2
[14]

Hoseinian FS, Irannajad M, Safari M. 2017. Effective factors and kinetics study of zinc ion removal from synthetic wastewater by ion flotation. Separation Science and Technology 52(5):892−902

doi: 10.1080/01496395.2016.1267216
[15]

Kashi G. 2023. Electrocoagulation/flotation process for removing copper from an aqueous environment. Scientific Reports 13:13334

doi: 10.1038/s41598-023-40512-y
[16]

Casqueira RG, Torem ML, Kohler HM. 2006. The removal of zinc from liquid streams by electroflotation. Minerals Engineering 19(13):1388−92

doi: 10.1016/j.mineng.2006.02.001
[17]

Hou W, Li Y, Xu S, Wang Q, Song K, et al. 2023. Removal of Zn2+ from glycolytic monomers of the polyethylene terephthalate based on electrodeposition. Journal of Environmental Chemical Engineering 11(3):110126

doi: 10.1016/j.jece.2023.110126
[18]

Akhtar FZ, Archana KM, Krishnaswamy VG, Rajagopal R. 2020. Remediation of heavy metals (Cr, Zn) using physical, chemical and biological methods: a novel approach. SN Applied Sciences 2:267

doi: 10.1007/s42452-019-1918-x
[19]

Honarmandrad Z, Javid N, Malakootian M. 2020. Efficiency of ozonation process with calcium peroxide in removing heavy metals (Pb, Cu, Zn, Ni, Cd) from aqueous solutions. SN Applied Sciences 2:703

doi: 10.1007/s42452-020-2392-1
[20]

Rouibah K, Ferkous H, Delimi A, Himeur T, Benamira M, et al. 2023. Biosorption of zinc (II) from synthetic wastewater by using Inula viscosa leaves as a low-cost biosorbent: experimental and molecular modeling studies. Journal of Environmental Management 326:116742

doi: 10.1016/j.jenvman.2022.116742
[21]

Thomas M, Melichová Z, Šuránek M, Kuc J, Więckol-Ryk A, et al. 2023. Removal of zinc from concentrated galvanic wastewater by sodium trithiocarbonate: process optimization and toxicity assessment. Molecules 28(2):546

doi: 10.3390/molecules28020546
[22]

Lim SS, Fontmorin JM, Pham HT, Milner E, Abdul PM, et al. 2021. Zinc removal and recovery from industrial wastewater with a microbial fuel cell: Experimental investigation and theoretical prediction. Science of The Total Environment 776:145934

doi: 10.1016/j.scitotenv.2021.145934
[23]

Skotta A, Jmiai A, Elhayaoui W, El-Asri A, Tamimi M, et al. 2023. Suspended matter and heavy metals (Cu and Zn) removal from water by coagulation/flocculation process using a new bio-flocculant: Lepidium sativum. Journal of the Taiwan Institute of Chemical Engineers 145:104792

doi: 10.1016/j.jtice.2023.104792
[24]

Kumar J, Joshi H, Malyan SK. 2022. Removal of copper, nickel, and zinc ions from an aqueous solution through electrochemical and nanofiltration membrane processes. Applied Sciences 12:280

doi: 10.3390/app12010280
[25]

Németh G, Mlinárik L, Török Á. 2016. Adsorption and chemical precipitation of lead and zinc from contaminated solutions in porous rocks: Possible application in environmental protection. Journal of African Earth Sciences 122:98−106

doi: 10.1016/j.jafrearsci.2016.04.022
[26]

Zhang J, Lei Y, Hu S, Li X, Lin G, et al. 2023. Ultrasonic pretreatment-solvent extraction process for separating zinc from pickling waste liquid. Journal of Environmental Chemical Engineering 11(6):111160

doi: 10.1016/j.jece.2023.111160
[27]

Jayan N, Bhatlu MLD. 2021. Isolation and studies on zinc removal using microorganism from contaminated soil. Materials Today: Proceedings 44:1892−97

doi: 10.1016/j.matpr.2020.12.071
[28]

Carreira ARF, Passos H, Coutinho JAP. 2023. Metal biosorption onto non-living algae: a critical review on metal recovery from wastewater. Green Chemistry 25:5775−88

doi: 10.1039/d3gc01993d
[29]

Ekmekyapar F, Aslan A, Bayhan YK, Cakici A. 2006. Biosorption of copper(II) by nonliving lichen biomass of Cladonia rangiformis hoffm. Journal of Hazardous Materials 137:293−98

doi: 10.22059/IJER.2012.509
[30]

Martins RJE, Pardo R, Boaventura RAR. 2004. Cadmium(II) and zinc(II) adsorption by the aquatic moss Fontinalis antipyretica: effect of temperature, pH and water hardness. Water Research 38(3):693−99

doi: 10.1016/j.watres.2003.10.013
[31]

Prabhu S, Hegde S. 2022. Pteridophytes as effective biosorption agents of heavy metals. In Ferns, eds. Marimuthu J, Fernandez H, Kumar A, Thangaiah S. Singapore: Springer. pp. 651–70 doi: 10.1007/978-981-16-6170-9_28

[32]

Hegazy GE, Soliman NA, Ossman ME, Abdel-Fattah YR, Moawad MN. 2023. Isotherm and kinetic studies of cadmium biosorption and its adsorption behaviour in multi-metals solution using dead and immobilized archaeal cells. Scientific Reports 13:2550

doi: 10.1038/s41598-023-29456-5
[33]

Marković M, Gorgievski M, Štrbac N, Grekulović V, Božinović K, et al. 2023. Raw eggshell as an adsorbent for copper ions biosorption − equilibrium, kinetic, thermodynamic and process optimization studies. Metals 13:206

doi: 10.3390/met13020206
[34]

Imran-Shaukat M, Wahi R, Ngaini Z. 2022. The application of agricultural wastes for heavy metals adsorption: a meta-analysis of recent studies. Bioresource Technology Reports 17:100902

doi: 10.1016/j.biteb.2021.100902
[35]

Simón D, Palet C, Costas A, Cristóbal A. 2022. Agro-industrial waste as potential heavy metal adsorbents and subsequent safe disposal of spent adsorbents. Water 14:3298

doi: 10.3390/w14203298
[36]

Shalaby MA, Matter IA, Gharieb MM, Darwesh OM. 2023. Biosorption performance of the multi-metal tolerant fungus Aspergillus sp. for removal of some metallic nanoparticles from aqueous solutions. Heliyon 9(5):e16125

doi: 10.1016/j.heliyon.2023.e16125
[37]

Şenol ZM, Gül ÜD, Gurbanov R, Şimşek S. 2021. Optimization the removal of lead ions by fungi: explanation of the mycosorption mechanism. Journal of Environmental Chemical Engineering 9(2):104760

doi: 10.1016/j.jece.2020.104760
[38]

Oliveira AF, Machado RB, Ferreira AM, Sena IDS, Silveira ME, et al. 2023. Copper-contaminated substrate biosorption by Penicillium sp. isolated from kefir grains. Microorganisms 11(6):1439

doi: 10.3390/microorganisms11061439
[39]

Mushtaq S, Bareen FE, Tayyeb A. 2023. Equilibrium kinetics and thermodynamic studies on biosorption of heavy metals by metal-resistant strains of Trichoderma isolated from tannery solid waste. Environmental Science and Pollution Research 30(4):10925−54

doi: 10.1007/s11356-022-22860-w
[40]

Puranik PR, Paknikar KM. 1997. Biosorption of lead and zinc from solutions using Streptoverticillium cinnamoneum waste biomass. Journal of Biotechnology 55(2):113−24

doi: 10.1016/S0168-1656(97)00067-9
[41]

El-Sayed MT. 2013. Removal of lead(II) by Saccharomyces cerevisiae AUMC 3875. Annals of Microbiology 63(4):1459−70

doi: 10.1007/s13213-013-0609-x
[42]

Kumar A, Tyagi A, Kumar S, Charaya MU, Singh R. 2023. An invasive plant Ageratum houstonianum L. as an adsorbent for the removal of triphenylmethane dye (malachite green): isotherm, kinetics, and thermodynamic studies. Biomass Conversion and Biorefinery

doi: 10.1007/s13399-023-04850-1
[43]

Langmuir I. 1918. The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society 40:1361−403

doi: 10.1021/ja02242a004
[44]

Freundlich HMF. 1906. Over the adsorption in solution. Journal of Physical Chemistry 57:385−470 (in German)

doi: 10.1515/zpch-1907-5723
[45]

Temkin MI, Pyzhev V. 1940. Kinetics of ammonia synthesis on promoted iron catalysts. Acta Physiochim. URSS 12:327−56

[46]

El-Gendy MMAA, Abdel-Moniem SM, Ammar NS, El-Bondkly AMA. 2023. Bioremoval of heavy metals from aqueous solution using dead biomass of indigenous fungi derived from fertilizer industry effluents: isotherm models evaluation and batch optimization. BioMetals 36:1307−29

doi: 10.1007/s10534-023-00520-x
[47]

Kumari S, Agrawal NK, Agarwal A, Kumar A, Malik N, et al. 2023. A prominent Streptomyces sp. biomass-based biosorption of zinc (II) and lead (II) from aqueous solutions: isotherm and kinetic. Separations 10(7):393

doi: 10.3390/separations10070393
[48]

Olafadehan OA, Akpo OY, Enemuo O, Amoo KO, Abatan OG. 2018. Equilibrium, kinetic and thermodynamic studies of biosorption of zinc ions from industrial wastewater using derived composite biosorbents from walnut shell. African Journal of Environmental Science and Technology 12(9):335−56

doi: 10.5897/AJEST2018.2515
[49]

Bueno DJ, Silva JO. 2014. Fungi: the fungal hyphae. In Encyclopedia of Food Microbiology (Second Edition), eds. Batt CA, Tortorello ML. Oxford: Academic Press. pp. 11−19 doi: 10.1016/B978-0-12-384730-0.00132-4

[50]

Kapoor A, Viraraghavan T. 1997. Fungi as biosorbents. In Biosorbents for Metal Ions, eds. Wase J, Forster C. London: Taylor & Francis. pp. 67–85 doi: 10.3109/9780203483046

[51]

Delgado A, Anselmo AM, Novais JM. 1998. Heavy metal biosorption by dried powdered mycelium of Fusarium flocciferum. Water Environment Research 70(3):370−75

doi: 10.2175/106143098x125019
[52]

Hanif A, Bhatti HN, Hanif MA. 2009. Removal and recovery of Cu(II) and Zn(II) using immobilized Mentha arvensis distillation waste biomass. Ecological Engineering 35:1427−34

doi: 10.1016/j.ecoleng.2009.05.013
[53]

Danial AW, Dardir FM. 2023. Copper biosorption by Bacillus pumilus OQ931870 and Bacillus subtilis OQ931871 isolated from Wadi Nakheil, Red Sea, Egypt. Microbial Cell Factories 22:152

doi: 10.1186/s12934-023-02166-3
[54]

Nemeş LN, Bulgariu L. 2016. Optimization of process parameters for heavy metals biosorption onto mustard waste biomass. Open Chemistry 14(1):175−87

doi: 10.1515/chem-2016-0019
[55]

Jalija DO, Uzairu A, Ekwumemmgbo P. 2020. Biosorption of Zn (II) ions from aqueous solution by immobilized Aspergillus fumigatus. Journal of Applied Sciences and Environmental Management 23(11):1991−94

doi: 10.4314/jasem.v23i11.13
[56]

Ong DC, Pingul-Ong SMB, Kan CC, de Luna MDG. 2018. Removal of nickel ions from aqueous solutions by manganese dioxide derived from groundwater treatment sludge. Journal of Cleaner Production 190:443−51

doi: 10.1016/j.jclepro.2018.04.175
[57]

Legorreta-Castañeda A, Lucho-Constantino C, Beltrán-Hernández R, Coronel-Olivares C, Vázquez-Rodríguez G. 2020. Biosorption of water pollutants by fungal pellets. Water 12:1155

doi: 10.3390/w12041155
[58]

Khodabakhshi A, Mohammadi-Moghadam F, Shakeri K, Hemati S. 2022. Equilibrium and thermodynamic studies on the biosorption of lead (II) by living and nonliving biomass of Penicillium notatum. Journal of Chemistry 2022:3109212

doi: 10.1155/2022/3109212
[59]

Wang J, Guo X. 2020. Adsorption isotherm models: classification, physical meaning, application and solving method. Chemosphere 258:127279

doi: 10.1016/j.chemosphere.2020.127279
[60]

Babatunde KA, Negash BM, Jufar SR, Ahmed TY, Mojid MR. 2022. Adsorption of gases on heterogeneous shale surfaces: a review. Journal of Petroleum Science and Engineering 208:109466

doi: 10.1016/j.petrol.2021.109466
[61]

Cherono F, Mburu N, Kakoi B. 2021. Adsorption of lead, copper and zinc in a multi-metal aqueous solution by waste rubber tires for the design of single batch adsorber. Heliyon 7(11):e08254

doi: 10.1016/j.heliyon.2021.e08254
[62]

Batool F, Akbar J, Iqbal S, Noreen S, Bukhari SNA. 2018. Study of isothermal, kinetic, and thermodynamic parameters for adsorption of cadmium: an overview of linear and nonlinear approach and error analysis. Bioinorganic Chemistry and Applications 2018:3463724

doi: 10.1155/2018/3463724
[63]

Acharya A, Jeppu G, Girish CR, Prabhu B, Murty VR, et al. 2024. Adsorption of arsenic and fluoride: modeling of single and competitive adsorption systems. Heliyon 10(11):e31967

doi: 10.1016/j.heliyon.2024.e31967
[64]

Edet UA, Ifelebuegu AO. 2020. Kinetics, isotherms, and thermodynamic modeling of the adsorption of phosphates from model wastewater using recycled brick waste. Processes 8(6):665

doi: 10.3390/pr8060665
[65]

Xie S. 2024. Biosorption of heavy metal ions from contaminated wastewater: an eco-friendly approach. Green Chemistry Letters and Reviews 17:2357213

doi: 10.1080/17518253.2024.2357213
[66]

Sireesha C, Durairaj K, Balasubramanian B, Sumithra S, Subha R, et al. 2025. Process development of guava leaves with alkali in removal of zinc ions from synthetic wastewater. Journal of the Taiwan Institute of Chemical Engineers 166:105283

doi: 10.1016/j.jtice.2023.105283
[67]

Allaoui M, Berradi M, Eddaoukhi A, Bensalah J, Dagdag O, et al. 2025. Evaluation of the efficiency of shell powder as a natural adsorbent for the adsorption of chromium in aqueous solutions: kinetic and thermodynamic approach and modeling of adsorption isotherms. Journal of the Indian Chemical Society 102(1):101503

doi: 10.1016/j.jics.2024.101503
[68]

Nag S, Das J, Biswas S, Lodh BK. 2025. Experimental and ANN based process optimization for bioremediation of Cr6+ and Cd2+ by green adsorbent prepared from Artocarpus heterophyllus leaves. Journal of the Indian Chemical Society 102(1):101485

doi: 10.1016/j.jics.2024.101485
[69]

Khare SK, Panday KK, Srivastava RM, Singh VN. 1987. Removal of victoria blue from aqueous solution by fly ash. Journal of Chemical Technology and Biotechnology 38(2):99−104

doi: 10.1002/jctb.280380206
[70]

Başkan G, Açıkel Ü. 2024. Comparison of the bioaccumulation and biosorption of copper ions by Rhizopus delemar and Candida lipolytica. Bioremediation Journal 29:42−58

doi: 10.1080/10889868.2024.2326579
[71]

Mousa AM, Abdel-Galil, EA, Zhran M, Moussa MG. 2025. Biosorption performance toward Co(II) and Cd(II) by irradiated Fusarium solani biomass. Environmental Geochemistry and Health 47:47

doi: 10.1007/s10653-024-02342-3
[72]

Mubarak MF, Mohamed AMG, Keshawy M, ElMoghny TA, Shehata N. 2022. Adsorption of heavy metals and hardness ions from groundwater onto modified zeolite: batch and column studies. Alexandria Engineering Journal 61(6):4189−207

doi: 10.1016/j.aej.2021.09.041
[73]

Wang J, Guo X. 2023. Adsorption kinetics and isotherm models of heavy metals by various adsorbents: an overview. Critical Reviews in Environmental Science and Technology 53:1837−65

doi: 10.1080/10643389.2023.2221157
[74]

Kumar PS, Ethiraj H, Venkat A, Deepika N, Nivedha S, et al. 2015. Adsorption kinetic, equilibrium and thermodynamic investigations of Zn(II) and Ni(II) ions removal by poly(azomethinethioamide) resin with pendent chlorobenzylidine ring. Polish Journal of Chemical Technology 17(3):100−9

doi: 10.1515/pjct-2015-0057
[75]

Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN. 2014. Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicology 7(2):60−72

doi: 10.2478/intox-2014-0009
[76]

Ortiz-Oliveros HB, Ouerfelli N, Cruz-Gonzalez D, Avila-Pérez P, Bulgariu L, et al. 2023. Modeling of the relationship between the thermodynamic parameters ΔH° and ΔS° with temperature in the removal of Pb ions in aqueous medium: case study. Chemical Physics Letters 814:140329

doi: 10.1016/j.cplett.2023.140329
[77]

Ciobanu AA, Bulgariu D, Ionescu IA, Puiu DM, Vasile GG, et al. 2023. Evaluation of thermodynamic parameters for Cu(II) ions biosorption on algae biomass and derived biochars. Symmetry 15(8):1500

doi: 10.3390/sym15081500
[78]

Alharbi NK, Al-Zaban MI, Albarakaty FM, Abdelwahab SF, Hassan SHA, et al. 2022. Kinetic, isotherm and thermodynamic aspects of Zn2+ biosorption by Spirulina platensis: optimization of process variables by response surface methodology. Life 12(4):585

doi: 10.3390/life1204058
[79]

Zarei S, Raanaei H, Mohammad-Hosseini V, Kamali S. 2025. Efficient removal of zinc ion pollution by carbon-based magnetic alloy: experimental, theoretical modeling and DFT studies. Inorganic Chemistry Communications 172:113735

doi: 10.1016/j.inoche.2024.113735
[80]

Cobo AJM, Lozano FE, Vilar MM, Valenzuela CM, Ramos ER. 2025. Biotechnological applications of the ubiquitous fungus Penicillium sp. 8L2: biosorption of Zn(II) and synthesis of ZnO nanoparticles as biocidal agents. Sustainability 17(6):2379

doi: 10.3390/su17062379
[81]

Shobham, Bhanot V, Mamta, Kumar SK, Gupta S, et al. 2025. Unveiling the potential of Aspergillus terreus SJP02 for zinc remediation and its driving mechanism. Scientific Reports 15:3376

doi: 10.1038/s41598-025-87749-3
[82]

Abdelkarim MS, Ali MHH, Kassem DA. 2025. Ecofriendly remediation of cadmium, lead, and zinc using dead cells of Microcystis aeruginosa. Scientific Reports 15:3677

doi: 10.1038/s41598-025-86884-1
[83]

Raut PN, Dolas AS, Chougule SM, Darade MM, Murali G, et al. 2025. Green adsorbents for heavy metal removal: a study on zinc ion uptake by Tinospora cordifolia biocarbon. Journal of Mines, Metals and Fuels 73(1):21−25

doi: 10.18311/jmmf/2025/47121
[84]

Zhang X, Zhao C, Xue F, Xia B, Lu Y, et al. 2024. Adsorption of Zinc(II) Ion by Spent and Raw Agaricus bisporus in Aqueous Solution. Processes 12(4):717

doi: 10.3390/pr12040717
[85]

Negi A, Joshi S, Joshi SK, Bhandari NS. 2024. Biosorption of zinc on functionally activated Lantana camara leaves: equilibrium, kinetic, and thermodynamic studies. Biomass Conversion and Biorefinery

doi: 10.1007/s13399-024-05955-x
[86]

Khalaf SA, Shartooh SM, Shihan MA. 2025. Assessing the loading capacity of walnut peels as a nanobiomass for the biosorption of certain heavy metals from wastewater. Journal of Ecological Engineering 26(2):169−82

doi: 10.12911/22998993/196879
[87]

Dharmadhas JS, Arumugam P, Periakaruppan R. 2023. Preparation and characterization of biosorbent Sargassum myriocystum for zinc removal. Marine Biology Research 19(2−3):121−31

doi: 10.1080/17451000.2023.2193897
[88]

Melčáková I, Růžovič T. 2021. Biosorption of zinc from aqueous solution using algae and plant biomass. Nova Biotechnologica et Chimica 10(1):33−43

doi: 10.36547/nbc.1062
[89]

Tiwari S, Aachhera S, Garg H, Rojra M, Nagar N, et al. 2022. Comparative biosorption kinetics study of Ni and Zn metal ions from the aqueous phase in sulfate medium by the wooden biomass of Dalbergia sissoo. Environmental Quality Management 31(4):63−73

doi: 10.1002/tqem.21765
[90]

Kalyani G, Gokulan R, Sujatha S. 2021. Biosorption of zinc metal ion in aqueous solution using biowaste of Pithophora cleveana Wittrock and Mimusops elengi. Desalination and Water Treatment 218:363−71

doi: 10.5004/dwt.2021.27005
[91]

Ugwu EI, Agunwamba JC. 2020. Optimal conditions for adsorption of zinc from industrial wastewater using groundnut husk ash. Environmental Monitoring and Assessment 192:345

doi: 10.1007/s10661-020-08262-w
[92]

Chen SH, Cheow YL, Ng SL, Ting ASY. 2020. Bioaccumulation and biosorption activities of indoor metal-tolerant Penicillium simplicissimum for removal of toxic metals. International Journal of Environmental Research 14:235−42

doi: 10.1007/s41742-020-00253-6
[93]

Pérez-Marín AB, Ortuño JF, Aguilar MI, Lloréns M, Meseguer VF. 2024. Competitive effect of zinc and cadmium on the biosorption of chromium by orange waste. Processes 12(1):148

doi: 10.3390/pr12010148
[94]

Feng CL, Li J, Li X, Li KL, Luo K, et al. 2018. Characterization and mechanism of lead and zinc biosorption by growing Verticillium insectorum J3. PLoS One 13(12):e0203859

doi: 10.1371/journal.pone.0203859
[95]

Gaur N, Dhankhar R. 2009. Equilibrium modelling and spectroscopic studies for the biosorption of Zn+2 ions from aqueous solution using immobilized Spirulina platensis. Iranian Journal of Environmental Health Science & Engineering 6(1):1−6

[96]

El Sayed MT, El-Sayed ASA. 2020. Bioremediation and tolerance of zinc ions using Fusarium solani. Heliyon 6(9):e05048

doi: 10.1016/j.heliyon.2020.e05048