[1]

Dezfulian MH, Jalili E, Roberto DKA, Moss BL, Khoo K, et al. 2016. Oligomerization of SCFTIR1 is essential for Aux/IAA degradation and auxin signaling in Arabidopsis. PLoS Genetics 12(9):e1006301

doi: 10.1371/journal.pgen.1006301
[2]

Takahashi K, Hayashi KI, Kinoshita T. 2012. Auxin activates the plasma membrane H+-ATPase by phosphorylation during hypocotyl elongation in Arabidopsis. Plant Physiology 159(2):632−41

doi: 10.1104/pp.112.196428
[3]

Jiang J, Zhu H, Li N, Batley J, Wang Y. 2022. The miR393-target module regulates plant development and responses to biotic and abiotic stresses. International Journal of Molecular Sciences 23(16):9477

doi: 10.3390/ijms23169477
[4]

Fendrych M, Akhmanova M, Merrin J, Glanc M, Hagihara S, et al. 2018. Rapid and reversible root growth inhibition by TIR1 auxin signalling. Nature Plants 4(7):453−59

doi: 10.1038/s41477-018-0190-1
[5]

Qi L, Kwiatkowski M, Chen H, Hoermayer L, Sinclair S, et al. 2022. Adenylate cyclase activity of TIR1/AFB auxin receptors in plants. Nature 611(7934):133−38

doi: 10.1038/s41586-022-05369-7
[6]

Du W, Lu Y, Li Q, Luo S, Shen S, et al. 2022. TIR1/AFB proteins: active players in abiotic and biotic stress signaling. Frontiers in Plant Science 13:1083409

doi: 10.3389/fpls.2022.1083409
[7]

Du W, Karamat U, Cao L, Li Y, Li H, et al. 2024. The TIR1/AFB family in Solanum Melongena: genome-wide identification and expression profiling under stresses and picloram treatment. Agronomy 14(7):1413

doi: 10.3390/agronomy14071413
[8]

Prigge MJ, Platre M, Kadakia N, Zhang Y, Greenham K, et al. 2020. Genetic analysis of the Arabidopsis TIR1/AFB auxin receptors reveals both overlapping and specialized functions. eLife 9:e54740

doi: 10.7554/elife.54740
[9]

Cui L, Zhang T, Li J, Lou Q, Chen J. 2014. Cloning and expression analysis of Cs-TIR1/AFB2: the fruit development-related genes of cucumber (Cucumis Sativus L.). Acta Physiologiae Plantarum 36(1):139−49

doi: 10.1007/s11738-013-1394-7
[10]

Ozga JA, Jayasinghege CPA, Kaur H, Gao LC, Nadeau CD, et al. 2022. Auxin receptors as integrators of developmental and hormonal signals during reproductive development in pea. Journal of Experimental Botany 73(12):4094−112

doi: 10.1093/jxb/erac152
[11]

Garrido-Vargas F, Godoy T, Tejos R, O'Brien JA. 2020. Overexpression of the auxin receptor AFB3 in Arabidopsis results in salt stress resistance and the modulation of NAC4 and SZF1. International Journal of Molecular Sciences 21(24):9528

doi: 10.3390/ijms21249528
[12]

Wojcik AM, Gaj MD. 2014. miR393 controls somatic embryogenesis in Arabidopsis through regulation of auxin signaling components (TIR1 and AFB2). Biotechnologia 95(1):123−24

[13]

Djami-Tchatchou AT, Harrison GA, Harper CP, Wang R, Prigge MJ, et al. 2020. Dual role of auxin in regulating plant defense and bacterial virulence gene expression during Pseudomonas Syringae PtoDC3000 pathogenesis. Molecular Plant-Microbe Interactions 33(8):1059−71

doi: 10.1094/MPMI-02-20-0047-R
[14]

Fousia S, Tsafouros A, Roussos PA, Tjamos SE. 2018. Increased resistance to Verticillium Dahliae in Arabidopsis plants defective in auxin signalling. Plant Pathology 67(8):1749−57

doi: 10.1111/ppa.12881
[15]

Su P, Zhao L, Li W, Zhao J, Yan J, et al. 2021. Integrated metabolo-transcriptomics and functional characterization reveals that the wheat auxin receptor TIR1 negatively regulates defense against Fusarium graminearum. Journal of Integrative Plant Biology 63(2):340−52

doi: 10.1111/jipb.12992
[16]

Kim T, Al Mijan M, Lee J, Yun J, Chung JH, et al. 2024. Essential oils for the treatment and management of nonalcoholic fatty liver disease (NAFLD). Natural Product Communications 19(4):1−7

doi: 10.1177/1934578x241250248
[17]

Sood T, Sood S, Sood VK, Badiyal A, Anuradha, et al. 2023. Assessment and validation of resistance to bacterial wilt (Ralstonia Solanacearum) through field and molecular studies in bell pepper. Journal of Plant Pathology 105(3):849−57

doi: 10.1007/s42161-023-01378-1
[18]

Shen L, Yang S, Yang F, Guan D, He S. 2020. CaCBL1 acts as a positive regulator in pepper response to Ralstonia Solanacearum. Molecular Plant-Microbe Interactions 33(7):945−57

doi: 10.1094/MPMI-08-19-0241-R
[19]

Shi L, Li X, Weng Y, Cai H, Liu K, et al. 2022. The CaPti1–CaERF3 module positively regulates resistance of Capsicum Annuum to bacterial wilt disease by coupling enhanced immunity and dehydration tolerance. The Plant Journal 111(1):250−68

doi: 10.1111/tpj.15790
[20]

Yang S, Cai W, Wu R, Huang Y, Lu Q, et al. 2023. Differential CaKAN3-CaHSF8 associations underlie distinct immune and heat responses under high temperature and high humidity conditions. Nature Communications 14(1):4477

doi: 10.1038/s41467-023-40251-8
[21]

Yang S, Shi Y, Zou L, Huang J, Shen L, et al. 2020. Pepper CaMLO6 negatively regulates Ralstonia Solanacearum resistance and positively regulates high temperature and high humidity responses. Plant and Cell Physiology 61(7):1223−38

doi: 10.1093/pcp/pcaa052
[22]

Yang S, Cai W, Shen L, Cao J, Liu C, et al. 2022. A CaCDPK29–CaWRKY27b module promotes CaWRKY40-mediated thermotolerance and immunity to Ralstonia solanacearum in pepper. New Phytologist 233(4):1843−63

doi: 10.1111/nph.17891
[23]

Zhang K, Wang X, Chen S, Liu Y, Zhang L, et al. 2025. The gap-free assembly of pepper genome reveals transposable-element-driven expansion and rapid evolution of pericentromeres. Plant Communications 6(2):101177

doi: 10.1016/j.xplc.2024.101177
[24]

Chen W, Wang X, Sun J, Wang X, Zhu Z, et al. 2024. Two telomere-to-telomere gapless genomes reveal insights into Capsicum evolution and capsaicinoid biosynthesis. Nature Communications 15(1):4295

doi: 10.1038/s41467-024-48643-0
[25]

Kwon JS, Nam JY, Yeom SI, Kang WH. 2021. Leaf-to-whole plant spread bioassay for pepper and Ralstonia solanacearum interaction determines inheritance of resistance to bacterial wilt for further breeding. International Journal of Molecular Sciences 22(5):2279

doi: 10.3390/ijms22052279
[26]

Mazumder R, Natale DA, Murthy S, Thiagarajan R, Wu CH. 2005. Computational identification of strain-, species- and genus-specific proteins. BMC Bioinformatics 6:279

doi: 10.1186/1471-2105-6-279
[27]

Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, et al. 2018. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Research 46(W1):W296−W303

doi: 10.1093/nar/gky427
[28]

Liu Y, Gao Y, Chen M, Jin Y, Qin Y, et al. 2023. GIFTdb: a useful gene database for plant fruit traits improving. The Plant Journal 116(4):1030−40

doi: 10.1111/tpj.16506
[29]

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 35(6):1547−49

doi: 10.1093/molbev/msy096
[30]

Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, et al. 2020. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant 13(8):1194−202

doi: 10.1016/j.molp.2020.06.009
[31]

Wan H, Ni Z, Wang Y, Yu Y. 2025. The gma-miR164a/GmNAC115 module participates in the adaptation of soybean to drought and salt stress by influencing reactive oxygen species scavenging. Plant Physiology and Biochemistry 227:110191

doi: 10.1016/j.plaphy.2025.110191
[32]

Bailey TL, Boden M, Buske FA, Frith M, Grant CE, et al. 2009. MEME Suite: tools for motif discovery and searching. Nucleic Acids Research 37:W202−W208

doi: 10.1093/nar/gkp335
[33]

Lu Y, Irshad A, Rehman SU, Wang Y, Zhou B, et al. 2024. Connecting the dots between GmPERK-1 and enhanced grain weight in Glycine max. Agronomy 14(8):1679

doi: 10.3390/agronomy14081679
[34]

Wang X, Luo S, Li Q, Song L, Zhang W, et al. 2022. Delphinidins and naringenin chalcone underlying the fruit color changes during maturity stages in eggplant. Agronomy 12(5):1036

doi: 10.3390/agronomy12051036
[35]

Santangelo KS, Nuovo GJ, Bertone AL. 2012. In vivo reduction or blockade of interleukin-1β in primary osteoarthritis influences expression of mediators implicated in pathogenesis. Osteoarthritis and Cartilage 20(12):1610−18

doi: 10.1016/j.joca.2012.08.011
[36]

Choi HW, Hwang BK. 2015. Molecular and cellular control of cell death and defense signaling in pepper. Planta 241(1):1−27

doi: 10.1007/s00425-014-2171-6
[37]

Hong JK, Hwang IS, Hwang BK. 2017. Functional roles of the pepper leucine-rich repeat protein and its interactions with pathogenesis-related and hypersensitive-induced proteins in plant cell death and immunity. Planta 246(3):351−64

doi: 10.1007/s00425-017-2709-5
[38]

Singh AK, Ghosh D, Chakraborty S. 2022. Optimization of Tobacco Rattle Virus (TRV)-based virus-induced gene silencing (VIGS) in tomato. In Plant Gene Silencing, eds Mysore KS, Senthil-Kumar M. New York, NY: Humana. Volume 2408. pp. 133−45 doi: 10.1007/978-1-0716-1875-2_9

[39]

Ho F, Chen Y, Lin Y, Cheng C, Wang J. 2009. A tobacco rattle virus-induced gene silencing system for a soil-borne vascular pathogen Ralstonia solanacearum. Botanical Studies 50(4):413−24

[40]

Senthil-Kumar M, Mysore KS. 2011. Virus-induced gene silencing can persist for more than 2 years and also be transmitted to progeny seedlings in Nicotiana benthamiana and tomato. Plant Biotechnology Journal 9(7):797−806

doi: 10.1111/j.1467-7652.2011.00589.x
[41]

Guo F, Huang Y, Qi P, Lian G, Hu X, et al. 2021. Functional analysis of auxin receptor OsTIR1/OsAFB family members in rice grain yield, tillering, plant height, root system, germination, and auxinic herbicide resistance. New Phytologist 229(5):2676−92

doi: 10.1111/nph.17061
[42]

Fang YN, Yang XM, Jiang N, Wu XM, Guo WW. 2020. Genome-wide identification and expression profiles of phased siRNAs in a male-sterile somatic cybrid of pummelo (Citrus grandis). Tree Genetics & Genomes 16(3):46

doi: 10.1007/s11295-020-01437-z
[43]

Yang C, Deng W, Tang N, Wang X, Yan F, et al. 2013. Overexpression of ZmAFB2, the maize homologue of AFB2 gene, enhances salt tolerance in transgenic tobacco. Plant Cell, Tissue and Organ Culture 112(2):171−79

doi: 10.1007/s11240-012-0219-5
[44]

Cai Z, Zeng DE, Liao J, Cheng C, Ali Sahito Z, et al. 2019. Genome-wide analysis of auxin receptor family genes in Brassica juncea var. tumida. Genes 10(2):165

doi: 10.3390/genes10020165
[45]

Greenspan NS. 2011. Attributing functions to genes and gene products. Trends in Biochemical Sciences 36(6):293−97

doi: 10.1016/j.tibs.2010.12.005
[46]

Eitas TK, Dangl JL. 2010. NB-LRR proteins: pairs, pieces, perception, partners, and pathways. Current Opinion in Plant Biology 13(4):472−77

doi: 10.1016/j.pbi.2010.04.007
[47]

Elliott KT, Cuff LE, Neidle EL. 2013. Copy number change: evolving views on gene amplification. Future Microbiology 8(7):887−99

doi: 10.2217/fmb.13.53
[48]

Ronald PC. 1998. Resistance gene evolution. Current Opinion in Plant Biology 1(4):294−98

doi: 10.1016/1369-5266(88)80049-9
[49]

To CC, Vohradsky J. 2007. A parallel genetic algorithm for single class pattern classification and its application for gene expression profiling in Streptomyces coelicolor. BMC Genomics 8:49

doi: 10.1186/1471-2164-8-49
[50]

Wang S, Bai Y, Li P, Yang L, Wang X. 2019. Genome-wide identification and expression analysis of the dof (DNA binding with one finger) protein family in monocot and dicot species. Physiological and Molecular Plant Pathology 108:101431

doi: 10.1016/j.pmpp.2019.101431
[51]

Yamauchi Y, Matsuda A, Matsuura N, Mizutani M, Sugimoto Y. 2018. Transcriptome analysis of Arabidopsis Thaliana treated with green leaf volatiles: possible role of green leaf volatiles as self-made damage-associated molecular patterns. Journal of Pesticide Science 43(3−4):207−13

doi: 10.1584/jpestics.D18-020
[52]

Qiao Z, Li H, Wang X, Ji X, You C. 2023. Genome-wide identification of apple auxin receptor family genes and functional characterization of MdAFB1. Horticultural Plant Journal 9(4):645−58

doi: 10.1016/j.hpj.2023.02.001
[53]

Zhang L, Yu G, Xue H, Li M, Lozano-Durán R, et al. 2024. Ralstonia solanacearum alters root developmental programmes in auxin-dependent and -independent manners. Molecular Plant Pathology 25(12):e700743

doi: 10.1111/mpp.70043
[54]

French E, Kim BS, Rivera Zuluaga K, Iyer-Pascuzzi AS. 2018. Whole root transcriptomic analysis suggests a role for auxin pathways in resistance to Ralstonia solanacearum in tomato. Molecular Plant-Microbe Interactions 31(4):432−44

doi: 10.1094/MPMI-08-17-0209-R
[55]

Garcia AL, Lima WG, Souza EB, Michereff SJ, Mariano RLR. 2013. Characterization of Ralstonia solanacearum causing bacterial wilt in bell pepper in the State of Pernambuco, Brazil. Journal of Plant Pathology 95(2):237−45