[1]

Tortajada C. 2020. Contributions of recycled wastewater to clean water and sanitation Sustainable Development Goals. NPJ Clean Water 3:22

doi: 10.1038/s41545-020-0069-3
[2]

Weiss JS, Møller HU, Aldave AJ, Seitz B, Bredrup C, et al. 2015. IC3D classification of corneal dystrophies−edition 2. Cornea 34(2):117−159

doi: 10.1097/ICO.0000000000000307
[3]

Weiss JS, Rapuano CJ, Seitz B, Busin M, Kivelä TT, et al. 2024. IC3D classification of corneal dystrophies−edition 3. Cornea 43(4):466−527

doi: 10.1097/ICO.0000000000003420
[4]

Ministry of Ecology and Environment of the People's Republic of China. 2024. China's Ecological and Environmental Status Bulletin. Beijing: Ministry of Ecology and Environment. pp. 35−70

[5]

Unesco World Water Assessment Programme. 2024. The United Nations World Water Development Report 2024: water for prosperity and peace. Report. Paris: UNESCO Publishing. 174 pp. doi: 10.18356/9789213589113

[6]

Xiong J, Gao Y, Zhou Y, Wu H, Li X, et al. 2023. The development status and research frontier of lake sciences from the perspective of Natural Science Foundation of China. Geographical Research 42(4):1088−1100

doi: 10.11821/dlyj020221301
[7]

Mulligan M, van Soesbergen A, Sáenz L. 2020. GOODD, a global dataset of more than 38,000 georeferenced dams. Scientific Data 7(1):3

doi: 10.1038/s41597-020-0362-5
[8]

Zhao Z, Wang S, Lu W, Yang W, Li S. 2024. Water quality assessment, possible origins and health risks of toxic metal(loid)s in five cascade reservoirs in the upper Mekong. Journal of Cleaner Production 441:141049

doi: 10.1016/j.jclepro.2024.141049
[9]

Yuan X, Xue N, Han Z. 2021. A meta-analysis of heavy metals pollution in farmland and urban soils in China over the past 20 years. Journal of Environmental Sciences 101:217−226

doi: 10.1016/j.jes.2020.08.013
[10]

Ahmadijokani F, Molavi H, Peyghambari A, Shojaei A, Rezakazemi M, et al. 2022. Efficient removal of heavy metal ions from aqueous media by unmodified and modified nanodiamonds. Journal of Environmental Management 316:115214

doi: 10.1016/j.jenvman.2022.115214
[11]

Zhu H, Bing H, Wu Y, Zhou J, Sun H, et al. 2019. The spatial and vertical distribution of heavy metal contamination in sediments of the three gorges reservoir determined by anti-seasonal flow regulation. Science of The Total Environment 664:79−88

doi: 10.1016/j.scitotenv.2019.02.016
[12]

Liu P, Zheng C, Wen M, Luo X, Wu Z, et al. 2021. Ecological risk assessment and contamination history of heavy metals in the sediments of Chagan Lake, northeast China. Water 13(7):894

doi: 10.3390/w13070894
[13]

Lee PK, Lim J, Jeong YJ, Hwang S, Lee JY, et al. 2021. Recent pollution and source identification of metal(loid)s in a sediment core from Gunsan Reservoir, South Korea. Journal of Hazardous Materials 416:126204

doi: 10.1016/j.jhazmat.2021.126204
[14]

Nikolić D, Skorić S, Lenhardt M, Hegediš A, Krpo-Ćetković J. 2020. Risk assessment of using fish from different types of reservoirs as human food – A study on European Perch (Perca fluviatilis). Environmental Pollution 257:113586

doi: 10.1016/j.envpol.2019.113586
[15]

Akogwu S, Wan Omar WM, Muhammad S, Subehi L, Fielding J. 2023. Past metal(loid) pollution records inferred from the sediments of Bukit Merah Reservoir Perak, Malaysia. Polish Journal of Environmental Studies 32(2):1507−1518

doi: 10.15244/pjoes/157053
[16]

Gou T, Liang R, Guo Q, Chen S, Zhao X, et al. 2024. Water environmental quality and algal bloom risk in Xiannv Lake after heavy metal pollution incident. Ecological Science 43(5):121

doi: 10.14108/j.cnki.1008-8873.2024.05.014
[17]

Guo Q, Li N, Bing Y, Chen S, Zhang Z, et al. 2018. Denitrifier communities impacted by heavy metal contamination in freshwater sediment. Environmental Pollution 242:426−432

doi: 10.1016/j.envpol.2018.07.020
[18]

Rocha GM, Salvador B, de Souza Laino P, Santos GHC, Demoner LE, et al. 2022. Responses of marine zooplankton indicators after five years of a dam rupture in the Doce River, Southeastern Brazil. Science of The Total Environment 806:151249

doi: 10.1016/j.scitotenv.2021.151249
[19]

Nong X, Shao D, Zhong H, Liang J. 2020. Evaluation of water quality in the South-to-North Water Diversion Project of China using the water quality index (WQI) method. Water Research 178:115781

doi: 10.1016/j.watres.2020.115781
[20]

Bing HJ, Liu Y, Huang JC, Tian X, Zhu H, et al. 2022. Dam construction attenuates trace metal contamination in water through increased sedimentation in the Three Gorges Reservoir. Water Research 217:118419

doi: 10.1016/j.watres.2022.118419
[21]

Gao L, Gao B, Xu D, Peng W, Lu J. 2019. Multiple assessments of trace metals in sediments and their response to the water level fluctuation in the Three Gorges Reservoir, China. Science of The Total Environment 648:197−205

doi: 10.1016/j.scitotenv.2018.08.112
[22]

Huang L, Fang H, Ni K, Yang W, Zhao W, et al. 2018. Distribution and potential risk of heavy metals in sediments of the Three Gorges Reservoir: the relationship to environmental variables. Water 10(12):1840

doi: 10.3390/w10121840
[23]

Liu Z, Wang H, Gao J, Zhu M, Ma H, et al. 2024. Impact of joint dispatch of reservoir group on water pollution incident in drinking water source area. Water Research 266:122312

doi: 10.1016/j.watres.2024.122312
[24]

Yazdian H, Zahraie B, Jaafarzadeh N. 2024. Multi-objective reservoir operation optimization by considering ecosystem sustainability and ecological targets. Water Resources Management 38(2):881–892

doi: 10.1007/s11269-023-03693-9
[25]

Zhang J, Li X, Guo L, Deng Z, Wang D, et al. 2021. Assessment of heavy metal pollution and water quality characteristics of the reservoir control reaches in the middle Han River, China. Science of The Total Environment 799:149472

doi: 10.1016/j.scitotenv.2021.149472
[26]

Cieśla M, Gruca-Rokosz R. 2024. Fate of heavy metals in ecosystems of dam reservoirs: Transport, distribution and significance of the origin of organic matter. Environmental Pollution 361:124811

doi: 10.1016/j.envpol.2024.124811
[27]

Willacker JJ, Eagles-Smith CA, Lutz MA, Tate MT, Lepak JM, et al. 2016. Reservoirs and water management influence fish mercury concentrations in the western United States and Canada. Science of The Total Environment 568:739−748

doi: 10.1016/j.scitotenv.2016.03.050
[28]

Lopes MC, Martins ALM, Simedo MBL, Filho MVM, Costa RCA, et al. 2021. A case study of factors controlling water quality in two warm monomictic tropical reservoirs located in contrasting agricultural watersheds. Science of The Total Environment 762:144511

doi: 10.1016/j.scitotenv.2020.144511
[29]

Rajendran S, Priya AK, Senthil Kumar P, Hoang TKA, Sekar K, et al. 2022. A critical and recent developments on adsorption technique for removal of heavy metals from wastewater - A review. Chemosphere 303:135146

doi: 10.1016/j.chemosphere.2022.135146
[30]

Fu ZJ, Jiang SK, Chao XY, Zhang CX, Shi Q, et al. 2022. Removing miscellaneous heavy metals by all-in-one ion exchange-nanofiltration membrane. Water Research 222:118888

doi: 10.1016/j.watres.2022.118888
[31]

You S, Lu J, Tang CY, Wang X. 2017. Rejection of heavy metals in acidic wastewater by a novel thin-film inorganic forward osmosis membrane. Chemical Engineering Journal 320:532−538

doi: 10.1016/j.cej.2017.03.064
[32]

Yang L, Hu W, Chang Z, Liu T, Fang D, et al. 2021. Electrochemical recovery and high value-added reutilization of heavy metal ions from wastewater: Recent advances and future trends. Environment International 152:106512

doi: 10.1016/j.envint.2021.106512
[33]

Yang J, Hou B, Wang J, Tian B, Bi J, et al. 2019. Nanomaterials for the removal of heavy metals from wastewater. Nanomaterials 9(3):424

doi: 10.3390/nano9030424
[34]

Ghuge SA, Nikalje GC, Kadam US, Suprasanna P, Hong JC. 2023. Comprehensive mechanisms of heavy metal toxicity in plants, detoxification, and remediation. Journal of Hazardous Materials 450:131039

doi: 10.1016/j.jhazmat.2023.131039
[35]

Palansooriya KN, Li J, Dissanayake PD, Suvarna M, Li L, et al. 2022. Prediction of soil heavy metal immobilization by biochar using machine learning. Environmental Science & Technology 56(7):4187−4198

doi: 10.1021/acs.est.1c08302
[36]

Bahri M. 2020. Analysis of the water, energy, food and land nexus using the system archetypes: a case study in the Jatiluhur reservoir, West Java, Indonesia. Science of The Total Environment 716:137025

doi: 10.1016/j.scitotenv.2020.137025
[37]

Liu Q, Xu X, Lin L, Bai L, Yang M, et al. 2024. A retrospective analysis of heavy metals and multi elements in the Yangtze River Basin: distribution characteristics, migration tendencies and ecological risk assessment. Water Research 254:121385

doi: 10.1016/j.watres.2024.121385
[38]

Feng W, Tao Y, Liu M, Deng Y, Yang F, et al. 2024. Distribution and risk assessment of nutrients and heavy metals from sediments in the world-class water transfer projects. Environmental Sciences Europe 36:140

doi: 10.1186/s12302-024-00970-1
[39]

Wang Y, Liu RH, Zhang YQ, Cui XQ, Tang AK, et al. 2016. Transport of heavy metals in the Huanghe River estuary, China. Environmental Earth Sciences 75(4):288

doi: 10.1007/s12665-015-4908-3
[40]

Zamora-Ledezma C, Negrete-Bolagay D, Figueroa F, Zamora-Ledezma E, Ni M, et al. 2021. Heavy metal water pollution: A fresh look about hazards, novel and conventional remediation methods. Environmental Technology & Innovation 22:101504

doi: 10.1016/j.eti.2021.101504
[41]

Zheng X, Lu Y, Xu J, Geng H, Li Y. 2023. Assessment of heavy metals leachability characteristics and associated risk in typical acid mine drainage (AMD)-contaminated river sediments from North China. Journal of Cleaner Production 413:137338

doi: 10.1016/j.jclepro.2023.137338
[42]

Kuang G, Xue S, Liu Z. 2024. Distribution characteristics and pollution evaluation of heavy metals in surface water of a uranium tailing area based on spatial interpolation. Journal of Radioanalytical and Nuclear Chemistry 332(4):4471−4477

doi: 10.1007/s10967-024-09643-y
[43]

Zhang T, Zhang C, Du S, Zhang Z, Lu W, et al. 2023. A review: the formation, prevention, and remediation of acid mine drainage. Environmental Science and Pollution Research 30(52):111871−111890

doi: 10.1007/s11356-023-30220-5
[44]

Jiao Y, Liu Y, Wang W, Li Y, Chang W, et al. 2023. Heavy metal distribution characteristics, water quality evaluation, and health risk evaluation of surface water in Abandoned Multi-Year Pyrite Mine Area. Water 15(17):3138

doi: 10.3390/w15173138
[45]

Chen MQ, Lu GN, Wu JX, Sun JT, Yang CF, et al. 2020. Acidity and metallic elements release from AMD-affected river sediments: effect of AMD standstill and dilution. Environmental Research 186:109490

doi: 10.1016/j.envres.2020.109490
[46]

Wang S, Mei G, Xie X, Guo L. 2021. The influence of the instantaneous collapse of tailings pond on downstream facilities. Advances in civil engineering 2021:4253315

doi: 10.1155/2021/4253315
[47]

Techane G, Sahilu G, Alakangas L, Mulat W, Kloos H. 2023. Assessment of heavy metal pollution associated with tailing dam in gold mining area, southern Ethiopia. Geosystem Engineering 26:1−11

doi: 10.1080/12269328.2022.2160833
[48]

Wu Q, Qi J, Xia X. 2017. Long-term variations in sediment heavy metals of a reservoir with changing trophic states: implications for the impact of climate change. Science of the Total Environment 609:242−250

doi: 10.1016/j.scitotenv.2017.04.041
[49]

Ullah M, Innocenzi V, Ayedi K, Vegliò F, Ippolito NM. 2024. Automotive wastewater treatment processes and technologies: a review. ACS ES& T Water 4(9):3663−3680

doi: 10.1021/acsestwater.4c00301
[50]

Tytła M, Kostecki M. 2019. Ecological risk assessment of metals and metalloid in bottom sediments of water reservoir located in the key anthropogenic "hot spot" area (Poland). Environmental Earth Sciences 78:179

doi: 10.1007/s12665-019-8146-y
[51]

Chassiot L, Francus P, De Coninck A, Lajeunesse P, Cloutier D, et al. 2019. Spatial and temporal patterns of metallic pollution in Québec City, Canada: Sources and hazard assessment from reservoir sediment records. Science of The Total Environment 673:136−147

doi: 10.1016/j.scitotenv.2019.04.021
[52]

Cao D, Cao W, Fang J, Cai L. 2014. Nitrogen and phosphorus losses from agricultural systems in China: a meta-analysis. Marine Pollution Bulletin 85(2):727−732

doi: 10.1016/j.marpolbul.2014.05.041
[53]

Panda RK, Behera S. 2003. Non-point source pollution of water resources: Problems and perspectives. Journal of Food, Agriculture & Environment 1(3−4):308−311

[54]

Humane SK, Ukey RR, Humane SS, Gajbhiye PB, Aparajit N. 2023. 210Pb geochronology and heavy metal fluxes in Darna and Gangapur Reservoirs, Maharashtra, India. Journal of The Geological Society of India 99:1427−1437

doi: 10.1007/s12594-023-2489-4
[55]

Zhang XN, Guo QP, Shen XX, Yu SW, Qiu GY. 2015. Water quality, agriculture and food safety in China: Current situation, trends, interdependencies, and management. Journal of Integrative Agriculture 14(11):2365−2379

doi: 10.1016/s2095-3119(15)61128-5
[56]

Cabral JBP, Oliveira SF, dos Santos FF, Becegato VA, Becegato VR, et al. 2021. Potentially toxic metal environmental pollution in sediments of a model hydroelectric plant water reservoir in Brazil. Environmental Earth Sciences 80(16):506

doi: 10.1007/s12665-021-09808-y
[57]

Mutshekwa T, Mugwedi L, Wasserman RJ, Dondofema F, Cuthbert R, et al. 2024. Aquatic macroinvertebrate community colonisation and succession in macadamia orchard and communal area reservoirs: a case study of Luvuvhu River valley, South Africa. Water SA 50(2):137−147

doi: 10.17159/wsa/2024.v50.i2.4083
[58]

Žáková Z, Kočková E. 1999. Biomonitoring and assessment of heavy metal contamination of streams and reservoirs in the Dyje/Thaya river basin, Czech Republic. Water Science and Technology 39(12):225−232

doi: 10.2166/wst.1999.0550
[59]

Zhao G, Wu Q, Hu W, Huang B, Zu Y, et al. 2024. Input and output balance of heavy metals from an abandoned mining area in farmland soils. Journal of Agro-Environment Science 43(7):1492−1502

doi: 10.11654/jaes.2023-0785
[60]

Amorosi A, Sammartino I, Dinelli E, Campo B, Guercia T, et al. 2022. Provenance and sediment dispersal in the Po-Adriatic source-to-sink system unraveled by bulk-sediment geochemistry and its linkage to catchment geology. Earth-Science Reviews 234:104202

doi: 10.1016/j.earscirev.2022.104202
[61]

Canpolat Ö, Varol M, Okan ÖÖ, Eriş KK, Çağlar M. 2020. A comparison of trace element concentrations in surface and deep water of the Keban Dam Lake (Turkey) and associated health risk assessment. Environmental Research 190:109903

doi: 10.1016/j.envres.2020.110012
[62]

Aradpour S, Noori R, Naseh MRV, Hosseinzadeh M, Safavi S, et al. 2021. Alarming carcinogenic and non-carcinogenic risk of heavy metals in Sabalan Dam Reservoir, Northwest of Iran. Environmental Pollutants and Bioavailability 33(1):278−291

doi: 10.1080/26395940.2021.1978868
[63]

Zhao Z, Li S, Han Q, Yang W, Chang C, et al. 2025. In situ high-resolution insights into the dynamics of arsenic (As) species and heavy metals across the sediment-water interface in a deep karst reservoir. Journal of Hazardous Materials 490:137775

doi: 10.1016/j.jhazmat.2025.137775
[64]

Ma Y, Yang C, Liu Z, Han C, Qin Y. 2024. Arsenic mobilization across the sediment-water interface of the Three Gorges Reservoir as a function of water depth using DGT and HR-Peepers: a preliminary study. Ecotoxicology and Environmental Safety, 276:116276

doi: 10.1016/j.ecoenv.2024.116276
[65]

Cui M, Li Y, Xu D, Lu J, Gao B. 2023. Geochemical characteristics and ecotoxicological risk of arsenic in water-level-fluctuation zone soils of the Three Gorges Reservoir, China. Science of The Total Environment 881:163495

doi: 10.1016/j.scitotenv.2023.163495
[66]

Kao JJ, Chen WJ. 2003. A multiobjective model for non-point source pollution control for an off-stream reservoir catchment. Water Science and Technology 48(10):177−183

doi: 10.2166/wst.2003.0569
[67]

Shi B, Li X, Hu W, Xi B, Liu S, et al. 2023. Environmental risk of tailings pond leachate pollution: traceable strategy for leakage channel and influence range of leachate. Journal of Environmental Management 331:117341

doi: 10.1016/j.jenvman.2023.117341
[68]

Ali Hussein Ali M, Sun S, Qian W, Abdou Dodo B. 2020. Electrical resistivity imaging for detection of hydrogeological active zones in karst areas to identify the site of mining waste disposal. Environmental Science and Pollution Research 27(18):22486−22498

doi: 10.1007/s11356-020-08738-9
[69]

Zhao CS, Pan X, Yang ST, Xiang H, Zhao J, et al. 2021. Effects and prediction of nonpoint source pollution on the structure of aquatic food webs. Ecohydrology 14:e2257

doi: 10.1002/eco.2257
[70]

Wang C, Yang Z, Zhong C, Ji J. 2016. Temporal-spatial variation and source apportionment of soil heavy metals in the representative river-alluviation depositional system. Environmental Pollution 216:18−26

doi: 10.1016/j.envpol.2016.05.037
[71]

Kovács E, Dubbin WE, Tamás J. 2006. Influence of hydrology on heavy metal speciation and mobility in a Pb–Zn mine tailing. Environmental Pollution 141(2):310−320

doi: 10.1016/j.envpol.2005.08.043
[72]

Sun W, Cheng K, Sun KY, Ma X. 2021. Microbially mediated remediation of contaminated sediments by heavy metals: a critical review. Current Pollution Reports 7(2):201−212

doi: 10.1007/s40726-021-00175-7
[73]

Chen Y, Xu Y, Ruan A. 2025. Microbial community structure and causal analysis in sediments of shallow eutrophic freshwater lakes under heavy metal compound pollution. Journal of Hazardous Materials 487:137135

doi: 10.1016/j.jhazmat.2025.137135
[74]

Huang J, Yuan F, Zeng G, Li X, Gu Y, et al. 2016. Influence of pH on heavy metal speciation and removal from wastewater using micellar enhanced ultrafiltration. Chemosphere 173:199−206

doi: 10.1016/j.chemosphere.2016.12.137
[75]

Rezaei F, Rastegari Mehr M, Shakeri A, Sacchi E, Borna K, et al. 2024. Predicting bioavailability of potentially toxic elements (PTEs) in sediment using various machine learning (ML) models: a case study in Mahabad Dam and River-Iran. Journal of Environmental Management 366:121788

doi: 10.1016/j.jenvman.2024.121788
[76]

Liu Q, Jia Z, Liu G, Li S, Hu J. 2023. Assessment of heavy metals remobilization and release risks at the sediment-water interface in estuarine environment. Marine Pollution Bulletin 187:114517

doi: 10.1016/j.marpolbul.2022.114517
[77]

Ordóñez Fernandez R, Giráldez Cervera JV, Vanderlinden K, Carbonell Bojollo R, González Fernández P. 2007. Temporal and spatial monitoring of the pH and heavy metals in a soil polluted by mine spill. Post cleaning effects. Water Air and Soil Pollution 178:229−243

doi: 10.1007/s11270-006-9193-z
[78]

Ying H, Zhao W, Feng X, Gu C, Wang X. 2022. The impacts of aging pH and time of acid mine drainage solutions on Fe mineralogy and chemical fractions of heavy metals in the sediments. Chemosphere 303(Part 2):135077

doi: 10.1016/j.chemosphere.2022.135077
[79]

Gutiérrez-León J, Cama J, Queralt I, Jiménez JA, Soler JM. 2021. Effect of acid mine drainage (AMD) on the alteration of hydrated Portland cement and calcareous sandstone. Applied Geochemistry 126:104900

doi: 10.1016/j.apgeochem.2021.104900
[80]

Azouzi R, Charef A, Hamzaoui AH. 2015. Assessment of effect of pH, temperature and organic matter on zinc mobility in a hydromorphic soil. Environmental Earth Sciences 74:2967−2980

doi: 10.1007/s12665-015-4328-4
[81]

He LP, Liu D, Lin JJ, Yu ZG, Yang XX, et al. 2017. Total nitrogen and pH-controlled chemical speciation, bioavailability and ecological risk from Cd, Cr, Cu, Pb and Zn in the water level-fluctuating zone sediments of the Three Gorges Reservoir. Chemical Speciation and Bioavailability 29(1):89−96

doi: 10.1080/09542299.2017.1335179
[82]

Zhang Y, Zhang H, Zhang Z, Liu C, Sun C, et al. 2018. pH Effect on heavy metal release from a polluted sediment. Journal of Chemistry 2018:7597640

doi: 10.1155/2018/7597640
[83]

Toller S, Funari V, Zannoni D, Vasumini, I, Dinelli E. 2022. Sediment quality of the Ridracoli fresh water reservoir in Italy: Insights from aqua regia digestion and sequential extractions. Science of The Total Environment 826:154167

doi: 10.1016/j.scitotenv.2022.154167
[84]

Fu C, Lan Q, Wu Y, Yan B, Ping W, et al. 2020. Influence of sediment characteristics on heavy metal fraction distribution in the Water-Level Fluctuation Zone of the Three Gorges Reservoir Area, China. Water Air and Soil Pollution 231:175

doi: 10.1007/s11270-020-04525-x
[85]

Fernández-Martínez R, Corrochano N, Álvarez-Quintana J, Ordónez A, Ordóñez A, Álvarez R, et al. 2024. Assessment of the ecological risk and mobility of arsenic and heavy metals in soils and mine tailings from the Carmina mine site (Asturias, NW Spain). Environmental Geochemistry and Health 46(3):90

doi: 10.1007/s10653-023-01848-6
[86]

Ding S, Wang Y, Yang M, Shi R, Ma T, et al. 2022. Distribution and speciation of arsenic in seasonally stratified reservoirs: implications for biotransformation mechanisms governing interannual variability. Science of The Total Environment 806(4):150925

doi: 10.1016/j.scitotenv.2021.150925
[87]

Madadi R, Karbassi A, Saeedi M. 2021. Release of heavy metals under pre-set redox potentials in Musa estuary sediments, northwestern of Persian Gulf. Marine Pollution Bulletin 168:112390

doi: 10.1016/j.marpolbul.2021.112390
[88]

Ma T, Luo H, Huang K, Pan Y, Tang T, et al. 2021. Integrated ecological risk assessment of heavy metals in an oil shale mining area after restoration. Journal of Environmental Management 300:113797

doi: 10.1016/j.jenvman.2021.113797
[89]

de Souza LR, Knöller K, Ladeira ACQ. 2016. Sulfur isotope fractionation and sequential extraction to assess metal contamination on lake and river sediments. Journal of Soils and Sediments 16:1986−1994

doi: 10.1007/s11368-016-1410-9
[90]

Angst G, Mueller KE, Castellano MJ, Vogel C, Wiesmeier M, et al. 2023. Unlocking complex soil systems as carbon sinks: multi-pool management as the key. Nature Communications 14:2967

doi: 10.1038/s41467-023-38700-5
[91]

Wu Y, Zhang X, Hao R, Zhou Y, Qiu G, et al. 2023. Rethinking terrestrial dissolved organic matter in dam reservoirs before mixing: linking photodegradation and biodegradation and the phenanthrene binding behavior. Science of The Total Environment 904(24):166653

doi: 10.1016/j.scitotenv.2023.166653
[92]

Qu L, He C, Wu Z, Dahlgren RA, Ren M, et al. 2022. Hypolimnetic deoxygenation enhanced production and export of recalcitrant dissolved organic matter in a large stratified reservoir. Water Research 219(8):118537

doi: 10.1016/j.watres.2022.118537
[93]

Nadon MJ, Metcalfe RA, Williams CJ, Somers KM, Xenopoulos MA. 2015. Assessing the effects of dams and waterpower facilities on riverine dissolved organic matter composition. Hydrobiologia 744(1):145−164

doi: 10.1007/s10750-014-2069-0
[94]

Cui M, Xu D, Liu X, Lai X, Zhang M, et al. 2024. Influence of spectral and molecular composition of dissolved organic matter on labile Cd mobility in riparian soils in the Three Gorges Reservoir, China. Science of The Total Environment 955(24):176736

doi: 10.1016/j.scitotenv.2024.176736
[95]

Luo L, Yang T, Dzakpasu M, Jiang X, Guo W, et al. 2024. Interplay of humic acid and Cr(VI) on green microalgae: metabolic responses and chromium enrichment. Journal of Hazardous Materials 480(3):135885

doi: 10.1016/j.jhazmat.2024.135885
[96]

Lin W, Guo X, Wang Y, Zhao J, Cheng X, et al. 2025. Dissolved organic matter mediates the interactions between bacterial community and heavy metal fractionation in contaminated coal mine soils. Ecotoxicology and Environmental Safety 297:118237

doi: 10.1016/j.ecoenv.2025.118237
[97]

Sá F, Longhini CM, Costa ES, Silva CA, Cagnin RC, et al. 2021. Time-sequence development of metal(loid)s following the 2015 dam failure in the Doce river estuary, Brazil. Science of The Total Environment 769(1):144532

doi: 10.1016/j.scitotenv.2020.144532
[98]

Ji H, Ding H, Tang L, Li C, Gao Y, et al. 2016. Chemical composition and transportation characteristic of trace metals in suspended particulate matter collected upstream of a metropolitan drinking water source, Beijing. Journal of Geochemical Exploration 169:123−136

doi: 10.1016/j.gexplo.2016.07.018
[99]

Hall BD, St Louis VL, Rolfhus KR, Bodaly RA, Beaty KG, et al. 2005. Impacts of reservoir creation on the biogeochemical cycling of methyl mercury and total mercury in boreal upland forests. Ecosystems 8(3):248−266

doi: 10.1007/s10021-003-0094-3
[100]

Yang N, Li Y, Zhang W, Lin L, Qian B, et al. 2020. Cascade dam impoundments restrain the trophic transfer efficiencies in benthic microbial food web. Water Research 170(6965):115351

doi: 10.1016/j.watres.2019.115351
[101]

Singh RP, Manchanda G, Maurya IK, Wei Y. (Eds.) 2020. Microbial Versatility in Varied Environments: Microbes in Sensitive Environments. Singapore: Springer-Nature. 292 pp. doi: 10.1007/978-981-15-3028-9

[102]

Liu X, Sheng Y, Liu Q, Li Z. 2024. Suspended particulate matter affects the distribution and migration of heavy metals in the Yellow River. The Science of The Total Environment 912:169537

doi: 10.1016/j.scitotenv.2023.169537
[103]

Zou X, Li Y, Wang L, Ahmed MK, Chen K, et al. 2022. Distribution and assessment of heavy metals in suspended particles in the Sundarban mangrove river, Bangladesh. Marine Pollution Bulletin 181(6):113856

doi: 10.1016/j.marpolbul.2022.113856
[104]

Qin S, Li X, Huang J, Li W, Wu P, et al. 2024. Inputs and transport of acid mine drainage-derived heavy metals in karst areas of Southwestern China. Environmental Pollution 343(1):123243

doi: 10.1016/j.envpol.2023.123243
[105]

Chen HH, Ma KY, Huang Y, Yang YC, Ma Z, et al. 2021. Salinity drives functional and taxonomic diversities in global water metagenomes. Frontiers in Microbiology 12:719725

doi: 10.3389/fmicb.2021.719725
[106]

Peterson BD, Poulin BA, Krabbenhoft DP, Tate MT, Baldwin AK, et al. 2023. Metabolically diverse microorganisms mediate methylmercury formation under nitrate-reducing conditions in a dynamic hydroelectric reservoir. The ISME Journal 17(10):1705−1718

doi: 10.1038/s41396-023-01482-1
[107]

Zhang K, Li K, Tong M, Xia Y, Cui Y, et al. 2022. Distribution pattern and influencing factors of heavy metal resistance genes in the Yellow River sediments of Henan section. International Journal of Environmental Research and Public Health 19(17):10724

doi: 10.3390/ijerph191710724
[108]

Sharma M, Kant R, Sharma AK, Sharma AK. 2025. Exploring the impact of heavy metals toxicity in the aquatic ecosystem. International Journal of Energy and Water Resources 9(1):267−280

doi: 10.1007/s42108-024-00284-1
[109]

Khushbu, Gulati R, Sushma, Kour A, Sharma P. 2022. Ecological impact of heavy metals on aquatic environment with reference to fish and human health. Journal of Applied and Natural Science 14(4):1471−1484

doi: 10.31018/jans.v14i4.3900
[110]

Blankson ER, Klerks PL. 2017. The effect of sediment characteristics on bioturbation-mediated transfer of lead, in freshwater laboratory microcosms with Lumbriculus variegatus. Ecotoxicology 26(2):227−237

doi: 10.1007/s10646-016-1757-0
[111]

García-Ordiales E, Esbrí JM, Covelli S, López-Berdonces MA, Higueras PL, et al. 2016. Heavy metal contamination in sediments of an artificial reservoir impacted by long-term mining activity in the Almadén mercury district (Spain). Environmental Science and Pollution Research 23(7):6024−6038

doi: 10.1007/s11356-015-4770-6
[112]

Geng N, Xia Y, Li D, Bai F, Xu C. 2024. Migration and transformation of heavy metal and its fate in intertidal sediments: a review. Processes 12(2):311

doi: 10.3390/pr12020311
[113]

Wilson DC. 2018. Potential urban runoff impacts and contaminant distributions in shoreline and reservoir environments of Lake Havasu, southwestern United States. The Science of The Total Environment 621(621):95−107

doi: 10.1016/j.scitotenv.2017.11.223
[114]

Yolcubal I, Demiray AD, Çiftçi E, Sanğu E. 2016. Environmental impact of mining activities on surface water and sediment qualities around Murgul copper mine, Northeastern Turkey. Environmental Earth Sciences 75(21):1415

doi: 10.1007/s12665-016-6224-y
[115]

Shoaei SM, Arjmandi SA, Ahmad Mirbagheri S. 2022. Enhancing the CE-QUAL-W2 to model dissolved lead transport and transformation in dam reservoirs: a case study of Shahid Rajaei Dam reservoir, north part of Iran. Environmental Science and Pollution Research 29(1):1−13

doi: 10.1007/s11356-022-19889-2
[116]

Zeng Y, Wang H, Liang D, Yuan W, Yan Y, et al. 2023. 2023. Three Gorges Dam shifts estuarine heavy metal risk through suspended sediment gradation. Journal of Environmental Management 338(2):117784

doi: 10.1016/j.jenvman.2023.117784
[117]

Xu FL, Li YL, Wang Y, He W, Kong XZ, et al. 2015. Key issues for the development and application of the species sensitivity distribution (SSD) model for ecological risk assessment. Ecological Indicators 54:227−237

doi: 10.1016/j.ecolind.2015.02.001
[118]

He W, Kong X, Qin N, He Q, Liu W, et al. 2019. Combining species sensitivity distribution (SSD) model and thermodynamic index (exergy) for system-level ecological risk assessment of contaminants in aquatic ecosystems. Environment International 133:105275

doi: 10.1016/j.envint.2019.105275
[119]

Schipper AM, Posthuma L, de Zwart D, Huijbregts MAJ. 2014. Deriving field-based species sensitivity distributions (f-SSDs) from stacked species distribution models (S-SDMs). Environmental Science & Technology 48(24):14464−14471

doi: 10.1021/es503223k
[120]

Liu J, Liu R, Zhang Z, Cai Y, Zhang L. 2019. A Bayesian network-based risk dynamic simulation model for accidental water pollution discharge of mine tailings ponds at watershed-scale. Journal of Environmental Management 246:821−831

doi: 10.1016/j.jenvman.2019.06.060
[121]

Zeng X, Du J, Zhang S, Ni T. 2023. Spatial-temporal characteristics of ecological risks from heavy metals for aquatic fauna in drinking water sources of China. Water Air and Soil Pollution 234(12):67

doi: 10.1007/s11270-023-06734-6
[122]

Dueñas-Moreno J, Mora A, Narvaez-Montoya C, Mahlknecht J. 2024. Trace elements and heavy metal(loid)s triggering ecological risks in a heavily polluted river-reservoir system of central Mexico: Probabilistic approaches. Environmental Research 262:119937

doi: 10.1016/j.envres.2024.119937
[123]

Sheng D, Meng X, Wen X, Wu J, Yu H, et al. 2022. Contamination characteristics, source identification, and source-specific health risks of heavy metal(loid)s in groundwater of an arid oasis region in Northwest China. Science of The Total Environment 841(1-3):156733

doi: 10.1016/j.scitotenv.2022.156733
[124]

Guo LC, Zeng EY. 2010. Broadening the global reach of the United States Environmental Protection Agency (USEPA) is vital to combating globalized environmental problems. Environmental Science and Technology 44(18):6911−6913

doi: 10.1021/es102521x
[125]

Dai X, Liang J, Shi H, Yan T, He Z, et al. 2024. Health risk assessment of heavy metals based on source analysis and Monte Carlo in the downstream basin of the Zishui. Environmental Research 245(4):117975

doi: 10.1016/j.envres.2023.117975
[126]

Wang J, Wang B, Zhao QB, Cao JN, Xiao X, et al. 2025. Sources analysis and risk assessment of heavy metals in soil in a polymetallic mining area in southeastern Hubei based on Monte Carlo simulation. Ecotoxicology and Environmental Safety 290(4):117607

doi: 10.1016/j.ecoenv.2024.117607
[127]

Zheng X, Xu J, Wang H, Liu X, Yao D, et al. 2017. Health risk assessment of a reservoir-type water source in the northeastern region of China. Human and Ecological Risk Assessment 23(4):751−766

doi: 10.1080/10807039.2016.1278518
[128]

Ali Fallahzadeh R, Ghaneian MT, Miri M, Dashti MM. 2017. Spatial analysis and health risk assessment of heavy metals concentration in drinking water resources. Environmental Science and Pollution Research 24(32):24790−24802

doi: 10.1007/s11356-017-0102-3
[129]

Wang D, Han G, Wang Y, Hu M, Liu J, et al. 2024. Effects of damming on riverine heavy metals and environmental risks in the world's largest hydropower engineering, China. Environmental Earth Sciences 83(21):604

doi: 10.1007/s12665-024-11903-9
[130]

Belanović Simić S, Miljković P, Baumgertel A, Lukić S, Ljubičić J, et al. 2023. Environmental and health risk assessment due to potentially toxic elements in soil near former antimony mine in Western Serbia. Land 12(2):421

doi: 10.3390/land12020421
[131]

Ali H, Khan E, Ilahi I. 2019. Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. Journal of Chemistry 2019:6730305

doi: 10.1155/2019/6730305
[132]

Ji WB, Yap SHK, Panwar N, Zhang LL, Lin B, et al. 2016. Detection of low-concentration heavy metal ions using optical microfiber sensor. Sensors and Actuators B: Chemical 237:142−149

doi: 10.1016/j.snb.2016.06.053
[133]

Kamel AH, Hefnawy A, Hazeem LJ, Rashdan SA, Abd-Rabboh HSM. 2024. Abd-Rabboh HSM. Current perspectives, challenges, and future directions in the electrochemical detection of microplastics. RSC Advances 14(3):2134−2158

doi: 10.1039/D3RA06755F
[134]

Samal S, Mohanty RP, Mohanty PS, Giri MK, Pati S, et al. 2023. Implications of biosensors and nanobiosensors for the eco-friendly detection of public health and agro-based insecticides: a comprehensive review. Heliyon 9(5):e15848

doi: 10.1016/j.heliyon.2023.e15848
[135]

Adekunle A, Raghavan V, Tartakovsky B. 2019. On-line monitoring of heavy metals-related toxicity with a microbial fuel cell biosensor. Biosensors & Bioelectronics 132:382−390

doi: 10.1016/j.bios.2019.03.011
[136]

Lahari SA, Kumawat N, Amreen K, Ponnalagu RN, Goel S. 2025. IoT integrated and deep learning assisted electrochemical sensor for multiplexed heavy metal sensing in water samples. NPJ Clean Water 8:10

doi: 10.1038/s41545-025-00441-x
[137]

Zhou J, Jia W, Liu M, Xu M. 2021. Elite adaptive simulated annealing algorithm for maximizing the lifespan in LSWSNs. Journal of Sensors 2021(16):9915133

doi: 10.1155/2021/9915133
[138]

Pan Y, Liu X, Qian L, Cui Y, Zheng X, et al. 2022. A hand-held optoelectronic tongue for the identification of heavy-metalions. Sensors and Actuators B Chemical 352(5790):130971

doi: 10.1016/j.snb.2021.130971
[139]

Muhammad-Aree S, Teepoo S. 2020. On-site detection of heavy metals in wastewater using a single paper strip integrated with a smartphone. Analytical and Bioanalytical Chemistry 412:1395−1405

doi: 10.1007/s00216-019-02369-x
[140]

Eliades DG, Vrachimis SG, Moghaddam A, Tzortzis I, Polycarpou MM. 2023. Contamination event diagnosis in drinking water networks: a review. Annual Reviews in Control 55:420−441

doi: 10.1016/j.arcontrol.2023.03.011
[141]

Li ZL, Liu HX, Zhang C, Fu G. 2024. Real-time water quality prediction in water distribution networks using graph neural networks with sparse monitoring data. Water Research 250:121018

doi: 10.1016/j.watres.2023.121018
[142]

Li Z, Ma W, Zhong D, Ma J, Zhang Q, et al. 2024. Applications of machine learning in drinking water quality management: a critical review on water distribution system. Journal of Cleaner Production 481:144171

doi: 10.1016/j.jclepro.2024.144171
[143]

Ahmed M, Mumtaz R, Hassan Zaidi SM. 2021. Analysis of water quality indices and machine learning techniques for rating water pollution: a case study of Rawal Dam, Pakistan. Water Supply 21(6):3225−3250

doi: 10.2166/ws.2021.082
[144]

Zou Y, Lou S, Zhang Z, Liu S, Zhou X, et al. 2024. Predictions of heavy metal concentrations by physicochemical water quality parameters in coastal areas of Yangtze River estuary. Marine Pollution Bulletin 199(1):115951

doi: 10.1016/j.marpolbul.2023.115951
[145]

Cheng Y, Zhou K, Wang J, Cui S, Yan J, et al. 2022. Regional metal pollution risk assessment based on a long short-term memory model: a case study of the South Altai Mountain mining area, China. Journal of Cleaner Production 379(8):134755

doi: 10.1016/j.jclepro.2022.134755
[146]

Sikri N, Behera B, Kumar A, Kumar V, Pandey OP, et al. 2025. Recent advancements on 2D nanomaterials as emerging paradigm for the adsorptive removal of microcontaminants. Advances in Colloid and Interface Science 340:103441

doi: 10.1016/j.cis.2025.103441
[147]

Fan YZ, Han L, Yang YZ, Sun Z, Li N, et al. 2020. Multifunctional binding strategy on nonconjugated polymer nanoparticles for ratiometric detection and effective removal of mercury ions. Environmental Science & Technology 54(16):10270−10278

doi: 10.1021/acs.est.0c00702
[148]

Ahmed MA, Ahmed MA, Mohamed AA. 2022. Facile adsorptive removal of dyes and heavy metals from wastewaters using magnetic nanocomposite of Zinc ferrite@reduced graphene oxide. Inorganic Chemistry Communications 144(3):109912

doi: 10.1016/j.inoche.2022.109912
[149]

Hosseinkhani O, Hamzehlouy A, Dan S, Sanchouli N, Tavakkoli M, et al. 2023. Graphene oxide/ZnO nanocomposites for efficient removal of heavy metal and organic contaminants from water. Arabian Journal of Chemistry 16(10):105176

doi: 10.1016/j.arabjc.2023.105176
[150]

Ji W, Li W, Wang Y, Zhang TC, Yuan S. 2024. Fe-MOFs/graphene oxide-derived magnetic nanocomposite for enhanced adsorption of As(V) in aqueous solution. Separation and Purification Technology 334:126003

doi: 10.1016/j.seppur.2023.126003
[151]

Radulescu DM, Surdu VA, Ficai A, Ficai D, Grumezescu AM, et al. 2023. Green synthesis of metal and metal oxide nanoparticles: a review of the principles and biomedical applications. International Journal of Molecular Sciences 24:15397

doi: 10.3390/ijms242015397
[152]

Şahİn M, Atasoy M, Arslan Y, Yildiz D. 2023. Removal of Ni(II), Cu(II), Pb(II), and Cd(II) from aqueous phases by silver nanoparticles and magnetic nanoparticles/nanocomposites. ACS Omega 8(38):34834−34843

doi: 10.1021/acsomega.3c04054
[153]

Zhang Y, Ni S, Wang X, Zhang W, Lagerquist L, et al. 2019. Ultrafast adsorption of heavy metal ions onto functionalized lignin-based hybrid magnetic nanoparticles. Chemical Engineering Journal 372:82−91

doi: 10.1016/j.cej.2019.04.111
[154]

Razavi R, Amiri M, Salavati-Niasari M. 2024. Eco-friendly synthesis by Rosemary extract and characterization of Fe3O4@SiO2 magnetic nanocomposite as a potential adsorbent for enhanced arsenic removal from aqueous solution: isotherm and kinetic studies. Biomass Conversion and Biorefinery 14:5109−5123

doi: 10.1007/s13399-022-02489-y
[155]

Xu X, Weng X, Li J, Owens G, Chen Z. 2024. Enhanced removal of Pb(II) from acid mine drainage using green reduced graphene oxide/silver nanoparticles. Science of the Total Environment 931:173001

doi: 10.1016/j.scitotenv.2024.173001
[156]

Chen J, Wu J, Liu P, Gan L, Chen Z. 2024. Enhanced removal and recovery of heavy metals from acid mine drainage using nFeS@GS biosynthesized by Geobacter sulfurreducens. Journal of Environmental Chemical Engineering 12(6):114687

doi: 10.1016/j.jece.2024.114687
[157]

Angaru GKR, Choi YL, Lingamdinne LP, Choi JS, Kim DS, et al. 2021. Facile synthesis of economical feasible fly ash-based zeolite-supported nano zerovalent iron and nickel bimetallic composite for the potential removal of heavy metals from industrial effluents. Chemosphere 267:128889

doi: 10.1016/j.chemosphere.2020.128889
[158]

Khan M, Naseer S, Khan M, Nazir R, Badshah A, et al. 2021. Magnetic solid-phase extraction of Cd(II) from water samples using magnetic nanoparticles impregnated walnut shells powder (MNPS-WSP). Desalination and Water Treatment 228:286−296

doi: 10.5004/dwt.2021.27352
[159]

Li B, Xie X, Meng T, Guo X, Li Q, et al. 2024. Recent advance of nanomaterials modified electrochemical sensors in the detection of heavy metal ions in food and water. Food Chemistry 440:138213

doi: 10.1016/j.foodchem.2023.138213
[160]

Portugal J, Bedia C, Amato F, Juárez-Facio AT, Stamatiou R, et al. 2024. Toxicity of airborne nanoparticles: Facts and challenges. Environment International 190:108889

doi: 10.1016/j.envint.2024.108889
[161]

Tran, LC, Su X, Nguyen H, La LBT, Adu P, et al. 2025. Advancing polymer nanocomposites through mechanochemical approaches. Advanced Nanocomposites 2:86−107

doi: 10.1016/j.adna.2025.03.002
[162]

Samriti, Rumyantseva M, Sun S, Kuznetsov A, Prakash J. 2023. Emerging nanomaterials in the detection and degradation of air pollutants. Current Opinion in Environmental Science & Health 35:100497

doi: 10.1016/j.coesh.2023.100497
[163]

Asghar N, Hussain A, Nguyen DA, Ali S, Hussain I, et al. 2024. Advancement in nanomaterials for environmental pollutants remediation: a systematic review on bibliometrics analysis, material types, synthesis pathways, and related mechanisms. Journal of Nanobiotechnology 22(1):26

doi: 10.1186/s12951-023-02151-3
[164]

Gargiulo V, Di Natale F, Alfe M. 2024. From agricultural wastes to advanced materials for environmental applications: Rice husk-derived adsorbents for heavy metals removal from wastewater. Journal of Environmental Chemical Engineering 12(5):113497

doi: 10.1016/j.jece.2024.113497
[165]

Sen TK. 2023. Agricultural solid wastes based adsorbent materials in the remediation of heavy metal ions from water and wastewater by adsorption: a review. Molecules 28:5575

doi: 10.3390/molecules28145575
[166]

Liu Y, Biswas B, Hassan M, Naidu R. 2024. Green adsorbents for environmental remediation: synthesis methods, ecotoxicity, and reusability prospects. Processes 12(6):1195

doi: 10.3390/pr12061195
[167]

Bhadoria P, Shrivastava M, Khandelwal A, Das R, Langyan S, et al. 2022. Preparation of modified rice straw-based bio-adsorbents for the improved removal of heavy metals from wastewater. Sustainable Chemistry and Pharmacy 29:100742

doi: 10.1016/j.scp.2022.100742
[168]

El-Shafey EI. 2010. Removal of Zn(II) and Hg(II) from aqueous solution on a carbonaceous sorbent chemically prepared from rice husk. Journal of Hazardous Materials 175(1-3):319−327

doi: 10.1016/j.jhazmat.2009.10.006
[169]

Wang F, Yu J, Zhang Z, Xu Y, Chi RA. 2018. An amino-functionalized ramie stalk-based adsorbent for highly effective Cu2+ removal from water: adsorption performance and mechanism. Process Safety and Environmental Protection 117:511−522

doi: 10.1016/j.psep.2018.05.023
[170]

Banerjee M, Basu RK, Das SK. 2018. Cr(VI) adsorption by a green adsorbent walnut shell: Adsorption studies, regeneration studies, scale-up design and economic feasibility. Process Safety and Environmental Protection 116:693−702

doi: 10.1016/j.psep.2018.03.037
[171]

Gupta N, Sen R. 2017. Kinetic and Equilibrium Modelling of Cu (II) Adsorption from aqueous solution by chemically modified groundnut husk (Arachis hypogaea). Journal of Environmental Chemical Engineering 5(5):4274−4281

doi: 10.1016/j.jece.2017.07.048
[172]

Tan J, Xu Y, Deng Q, Li Y, Yin Y, et al. 2024. Agricultural waste to environmental purifier: application and mechanism of aminated pomelo peel for adsorption of anionic dyes and Cr(VI). Industrial Crops and Products 218:118960

doi: 10.1016/j.indcrop.2024.118960
[173]

Xiao WD, Xiao LP, Xiao WZ, Liu K, Zhang Y, et al. 2022. Cellulose-based bio-adsorbent from TEMPO-oxidized natural loofah for effective removal of Pb(II) and methylene blue. International Journal of Biological Macromolecules 218:285−294

doi: 10.1016/j.ijbiomac.2022.07.130
[174]

Solanki A, Ahamad Z, Gupta V. 2025. Upcycling waste biomass: Alkali-modified watermelon rind as a lignocellulosic bioadsorbent for copper ion removal. Industrial Crops and Products 224:120340

doi: 10.1016/j.indcrop.2024.120340
[175]

Agouborde L, Navia R. 2009. Heavy metals retention capacity of a non-conventional sorbent developed from a mixture of industrial and agricultural wastes. Journal of Hazardous Materials 167:536−544

doi: 10.1016/j.jhazmat.2009.01.027
[176]

Naga Babu A, Reddy DS, Kumar GS, Ravindhranath K, Krishna Mohan GV. 2018. Removal of lead and fluoride from contaminated water using exhausted coffee grounds based bio-sorbent. Journal of Environmental Management 218:602−612

doi: 10.1016/j.jenvman.2018.04.091
[177]

Bento JGGS, Senra LF, Maia LS, Almeida LS, Ferreira LM, et al. 2025. Prediction of Cr6+ removal on the biosorbent from pine cone residue with machine learning simulations. Surfaces and Interfaces 65:106460

doi: 10.1016/j.surfin.2025.106460
[178]

Šoštarić T, Simić M, Lopičić Z, Zlatanović S, Pastor F, et al. 2023. Food waste (beetroot and apple pomace) as sorbent for lead from aqueous solutions−alternative to landfill disposal. Processes 11:1343

doi: 10.3390/pr11051343
[179]

An HK, Park BY, Kim DS. 2001. Crab shell for the removal of heavy metals from aqueous solution. Water Research 35(15):3551−3556

doi: 10.1016/S0043-1354(01)00099-9
[180]

Wu Y, Ming J, Zhou W, Xiao N, Cai J. 2023. Efficiency and mechanism in preparation and heavy metal cation/anion adsorption of amphoteric adsorbents modified from various plant straws. Science of The Total Environment 884:163887

doi: 10.1016/j.scitotenv.2023.163887
[181]

Mao J, Xue Y, Zhu H, Xue F, Lei X, et al. 2024. Agricultural residue-based adsorbents with anisotropic cross-linked structures for simultaneous instantaneous capture of heavy metal ions. Chemical Engineering Journal 482:149010

doi: 10.1016/j.cej.2024.149010
[182]

Xi R, Zhou J, Jiang B, Zhang Q, Zhu K, et al. 2024. Polydopamine-functionalized natural cellulosic Juncus effusus fiber for efficient and eco-friendly Cr(VI) removal from wastewater. Industrial Crops and Products 208:117877

doi: 10.1016/j.indcrop.2023.117877
[183]

Pandey D, Chhimwal M, Srivastava RK. 2022. A review on the application of macrophytes in phytoremediation of heavy metal polluted water. Research Journal of Chemistry and Environment 26(2):1−12

doi: 10.25303/2603rjce116125
[184]

Madhav S, Mishra R, Kumari A, Srivastav AL, Ahamad A, et al. 2024. A review on sources identification of heavy metals in soil and remediation measures by phytoremediation-induced methods. International Journal of Environmental Science and Technology 21:1099−1020

doi: 10.1007/s13762-023-04950-5
[185]

Ali S, Abbas Z, Rizwan M, Zaheer IE, Yavaş İ, et al. 2020. Application of floating aquatic plants in phytoremediation of heavy metals polluted water: a review. Sustainability 12(5):1927

doi: 10.3390/su12051927
[186]

Shi D, Zhuang K, Xia Y, Zhu C, Chen C, et al. 2017. Hydrilla verticillata employs two different ways to affect DNA methylation under excess copper stress. Aquatic Toxicology 193:97−104

doi: 10.1016/j.aquatox.2017.10.007
[187]

Anning AK, Akoto R. 2018. Assisted phytoremediation of heavy metal contaminated soil from a mined site with Typha latifolia and Chrysopogon zizanioides. Ecotoxicology and Environmental Safety 148:97−104

doi: 10.1016/j.ecoenv.2017.10.014
[188]

Delplace G, Schreck E, Pokrovsky OS, Zouiten C, Blondet I, et al. 2020. Accumulation of heavy metals in phytoliths from reeds growing on mining environments in Southern Europe. Science of the Total Environment 712:135595

doi: 10.1016/j.scitotenv.2019.135595
[189]

Vlyssides A, Barampouti EM, Mai S. 2005. Heavy metal removal from water resources using the aquatic plant apium nodiflorum. Communications in Soil Science & Plant Analysis 36(7−8):1075−1081

doi: 10.1081/CSS-200050499
[190]

Urrutia C, Yañez-Mansilla E, Jeison D. 2019. Bioremoval of heavy metals from metal mine tailings water using microalgae biomass. Algal Research 43:101659

doi: 10.1016/j.algal.2019.101659
[191]

Pang YL, Quek YY, Lim S, Shuit SH. 2023. Review on phytoremediation potential of floating aquatic plants for heavy metals: a promising approach. Sustainability 15(2):1290

doi: 10.3390/su15021290
[192]

Dhir B, Srivastava S. 2011. Heavy metal removal from a multi-metal solution and wastewater by Salvinia natans. Ecological Engineering 37(6):893−896

doi: 10.1016/j.ecoleng.2011.01.007
[193]

Prabakaran S, Mohanraj T, Arumugam A, Sudalai S. 2022. A state-of-the-art review on the environmental benefits and prospects of Azolla in biofuel, bioremediation and biofertilizer applications. Industrial Crops and Products 183:114942

doi: 10.1016/j.indcrop.2022.114942
[194]

Bingöl NA, Özmal F, Akın B. 2017. Phytoremediation and biosorption potential of Lythrum salicaria L. for Nickel removal from aqueous solutions. Polish Journal of Environmental Studies 26(6):2479−2485

doi: 10.15244/PJOES/70628
[195]

Mahohi A, Raiesi F. 2019. Functionally dissimilar soil organisms improve growth and Pb/Zn uptake by Stachys inflata grown in a calcareous soil highly polluted with mining activities. Journal of Environmental Management 247:780−789

doi: 10.1016/j.jenvman.2019.06.130
[196]

Xie P, Zahoor F, Iqbal SS, Zahoor, Ullah S, et al. 2022. Elimination of toxic heavy metals from industrial polluted water by using hydrophytes. Journal of Cleaner Production 352:131358

doi: 10.1016/j.jclepro.2022.131358
[197]

Schor-Fumbarov T, Keilin Z, Tel-Or E. 2003. Characterization of Cadmium uptake by the water lily Nymphaea aurora. International Journal of Phytoremediation 5(2):169−179

doi: 10.1080/713610178
[198]

Cui S, Lv J, Hough R, Fu Q, An L, et al. 2024. Recent advances and prospects of neonicotinoid insecticides removal from aquatic environments using biochar: adsorption and degradation mechanisms. Science of The Total Environment 939:173509

doi: 10.1016/j.scitotenv.2024.173509
[199]

Hsu CJ, Cheng YH, Chung A, Huang YP, Ting Y, et al. 2023. Using recoverable sulfurized magnetic biochar for active capping to remediate multiple heavy metal contaminated sediment. Environmental Pollution 316(1):120555

doi: 10.1016/j.envpol.2022.120555
[200]

Ting Y, Ch'Ng BL, Chen C, Ou MY, Cheng YH, et al. 2020. A simulation study of mercury immobilization in estuary sediment microcosm by activated carbon/clay-based thin-layer capping under artificial flow and turbation. The Science of the Total Environment 708:135068

doi: 10.1016/j.scitotenv.2019.135068
[201]

Wang L, Wang Y, Ma F, Tankpa V, Bai S, et al. 2019. Mechanisms and reutilization of modified biochar used for removal of heavy metals from wastewater: a review. Science of the Total Environment 668:1298−1309

doi: 10.1016/j.scitotenv.2019.03.011
[202]

Xiang L, Liu S, Ye S, Yang H, Song B, et al. 2021. Potential hazards of biochar: the negative environmental impacts of biochar applications. Journal of Hazardous Materials 420:126611

doi: 10.1016/j.jhazmat.2021.126611
[203]

Ruzickova J, Koval S, Raclavska H, Kucbel M, Svedova B, et al. 2021. A comprehensive assessment of potential hazard caused by organic compounds in biochar for agricultural use. Journal of Hazardous Materials 403:123644

doi: 10.1016/j.jhazmat.2020.123644
[204]

Acosta Hernández I, Muñoz Morales M, Fernández Morales FJ, Rodríguez Romero L, Villaseñor Camacho J. 2023. Removal of heavy metals from mine tailings by in-situ bioleaching coupled to electrokinetics. Environmental Research 238(2):117183

doi: 10.1016/j.envres.2023.117183
[205]

Yao Y, Feng Y, Li H, Cui Y, Liu M, et al. 2024. New insights into sustainable in-situ fixation of heavy metals in disturbed seafloor sediments. Journal of Hazardous Materials 480:136411

doi: 10.1016/j.jhazmat.2024.136411
[206]

Chang X, Duan T, Feng J, Li YX. 2024. Contrasting fate and binding behavior of Mn and Cu with dissolved organic matter during in situ remediation using multicomponent capping in malodorous black water. Water Research 253:121288

doi: 10.1016/j.watres.2024.121288
[207]

Sarkar DJ, Das Sarkar S, V SK, Chanu TN, Banerjee T, et al. 2023. Ameliorative effect of natural floating island as fish aggregating devices on heavy metals distribution in a freshwater wetland. Environmental Pollution 336:122428

doi: 10.1016/j.envpol.2023.122428
[208]

Shahid MJ, Ali S, Shabir G, Siddique M, Rizwan M, et al. 2020. Comparing the performance of four macrophytes in bacterial assisted floating treatment wetlands for the removal of trace metals (Fe, Mn, Ni, Pb, and Cr) from polluted river water. Chemosphere 243:125353

doi: 10.1016/j.chemosphere.2019.125353
[209]

Acosta-Núñez LF, Mussali-Galante P, Castrejón-Godínez ML, Rodríguez-Solís A, Castañeda-Espinoza JD, et al. 2025. In situ phytoremediation of mine tailings with high concentrations of Cadmium and Lead using Dodonaea viscosa (Sapindaceae). Plants 14(1):69

doi: 10.3390/plants14010069
[210]

Chang Y, Cui H, Huang M, He Y. 2017. Artificial floating islands for water quality improvement. Environmental Reviews 25(3):350−357

doi: 10.1139/er-2016-0038
[211]

Zhao F, Xi S, Yang X, Yang W, Li J, et al. 2012. Purifying eutrophic river waters with integrated floating island systems. Ecological Engineering 40(3):53−60

doi: 10.1016/j.ecoleng.2011.12.012
[212]

Liu X, Huang L, Qian K. 2021. Nanomaterial-based electrochemical sensors: mechanism, preparation, and application in biomedicine. Advanced NanoBiomed Research 1:2000104

doi: 10.1002/anbr.202000104
[213]

Liu C, Wu T, Hsu PC, Xie J, Zhao J, et al. 2019. Direct/alternating current electrochemical method for removing and recovering heavy metal from water using graphene oxide electrode. ACS Nano 13(6):6431

doi: 10.1021/acsnano.8b09301
[214]

Dube A, Malode SJ, Ali Alshehri M, Shetti NP. 2025. Electrochemical water treatment: Review of different approaches. Journal of Environmental Management 373:123911

doi: 10.1016/j.jenvman.2024.123911
[215]

Guo Z, Zhang Y, Jia H, Guo J, Meng X, et al. 2022. Electrochemical methods for landfill leachate treatment: a review on electrocoagulation and electrooxidation. Science of The Total Environment 806:150529

doi: 10.1016/j.scitotenv.2021.150529
[216]

Xu Y, Zhang C, Zhao M, Rong H, Zhang K, et al. 2017. Comparison of bioleaching and electrokinetic remediation processes for removal of heavy metals from wastewater treatment sludge. Chemosphere 168:1152−1157

doi: 10.1016/j.chemosphere.2016.10.086
[217]

Putra RS, Wicaksono WP, Fatimah I, Tanaka S. 2022. Electro-enhanced phytoremediation system on the removal of trace metal concentration from contaminated water. Heliyon 8(11):e11451

doi: 10.1016/j.heliyon.2022.e11451
[218]

Sadasivan Pillai H, Tharayil M. 2017. Treatment of heavy metals from water by electro-phytoremediation technique. Journal of Ecological Engineering 18(5):18−26

doi: 10.12911/22998993/76208
[219]

Xu J, Liu C, Hsu PC, Zhao J, Wu T, et al. 2019. Remediation of heavy metal contaminated soil by asymmetrical alternating current electrochemistry. Nature Communications 10:2440

doi: 10.1038/s41467-019-10472-x