[1]

Auler PA, Souza GM, da Silva Engela MRG, do Amaral MN, Rossatto T, et al. 2021. Stress memory of physiological, biochemical and metabolomic responses in two different rice genotypes under drought stress: The scale matters. Plant Science 311:110994

doi: 10.1016/j.plantsci.2021.110994
[2]

Lämke J, Brzezinka K, Bäurle I. 2016. HSFA2 orchestrates transcriptional dynamics after heat stress in Arabidopsis thaliana. Transcription 7(4):111−14

doi: 10.1080/21541264.2016.1187550
[3]

Zhang H, Liu S, Ren T, Niu M, Liu X, et al. 2023. Crucial abiotic stress regulatory network of NF-Y transcription factor in plants. International Journal of Molecular Sciences 24(5):4426

doi: 10.3390/ijms24054426
[4]

Verma S, Kumar N, Verma A, Singh H, Siddique KHM, et al. 2020. Novel approaches to mitigate heat stress impacts on crop growth and development. Plant Physiology Reports 25(4):627−44

doi: 10.1007/s40502-020-00550-4
[5]

IPCC. 2021. Synthesis report of the IPPC sixth assessment report (AR6), Longer report. Geneva, Switzerland: IPCC

[6]

Zhao C, Liu B, Piao S, Wang X, Lobell DB, et al. 2017. Temperature increase reduces global yields of major crops in four independent estimates. Proceedings of the National Academy of Sciences of the United States of America 114(35):9326−31

doi: 10.1073/pnas.1701762114
[7]

Sun M, Jiang F, Cen B, Wen J, Zhou Y, et al. 2018. Respiratory burst oxidase homologue-dependent H2O2 and chloroplast H2O2 are essential for the maintenance of acquired thermotolerance during recovery after acclimation. Plant, Cell & Environment 41(10):2373−89

doi: 10.1111/pce.13351
[8]

Sharma M, Kumar P, Verma V, Sharma R, Bhargava B, et al. 2022. Understanding plant stress memory response for abiotic stress resilience: molecular insights and prospects. Plant Physiology and Biochemistry 179:10−24

doi: 10.1016/j.plaphy.2022.03.004
[9]

Stief A, Altmann S, Hoffmann K, Pant BD, Scheible WR, et al. 2014. Arabidopsis miR156 regulates tolerance to recurring environmental stress through SPL transcription factors. The Plant Cell 26(4):1792−807

doi: 10.1105/tpc.114.123851
[10]

Zheng S, Zhao W, Liu Z, Geng Z, Li Q, et al. 2024. Establishment and maintenance of heat-stress memory in plants. International Journal of Molecular Sciences 25(16):8976

doi: 10.3390/ijms25168976
[11]

Ganie SA, McMulkin N, Devoto A. 2024. The role of priming and memory in rice environmental stress adaptation: current knowledge and perspectives. Plant, Cell & Environment 47(5):1895−915

doi: 10.1111/pce.14855
[12]

Fan Y, Ma C, Huang Z, Abid M, Jiang S, et al. 2018. Heat priming during early reproductive stages enhances thermo-tolerance to post-anthesis heat stress via improving photosynthesis and plant productivity in winter wheat (Triticum aestivum L.). Frontiers in Plant Science 9:805

doi: 10.3389/fpls.2018.00805
[13]

Kotak S, Larkindale J, Lee U, von Koskull-Döring P, Vierling E, et al. 2007. Complexity of the heat stress response in plants. Current Opinion in Plant Biology 10(3):310−16

doi: 10.1016/j.pbi.2007.04.011
[14]

Li Y, Gao Z, Lu J, Wei X, Qi M, et al. 2022. SlSnRK2.3 interacts with SlSUI1 to modulate high temperature tolerance via Abscisic acid (ABA) controlling stomatal movement in tomato. Plant Science 321:111305

doi: 10.1016/j.plantsci.2022.111305
[15]

Wahid A. 2007. Physiological implications of metabolite biosynthesis for net assimilation and heat-stress tolerance of sugarcane (Saccharum officinarum) sprouts. Journal of Plant Research 120(2):219−28

doi: 10.1007/s10265-006-0040-5
[16]

Khan Z, Shahwar D. 2020. Role of heat shock proteins (HSPs) and heat stress tolerance in crop plants. In Sustainable Agriculture in the Era of Climate Change, eds Roychowdhury R, Choudhury S, Hasanuzzaman M, Srivastava S. Cham: Springer. pp. 211−34 doi: 10.1007/978-3-030-45669-6_9

[17]

Zhou R, Yu X, Li X, Mendanha dos Santos T, Rosenqvist E, et al. 2020. Combined high light and heat stress induced complex response in tomato with better leaf cooling after heat priming. Plant Physiology and Biochemistry 151:1−9

doi: 10.1016/j.plaphy.2020.03.011
[18]

Olas JJ, Apelt F, Annunziata MG, John S, Richard SI, et al. 2021. Primary carbohydrate metabolism genes participate in heat-stress memory at the shoot apical meristem of Arabidopsis thaliana. Molecular Plant 14(9):1508−24

doi: 10.1016/j.molp.2021.05.024
[19]

Li N, Euring D, Cha JY, Lin Z, Lu M, et al. 2021. Plant hormone-mediated regulation of heat tolerance in response to global climate change. Frontiers in Plant Science 11:627969

doi: 10.3389/fpls.2020.627969
[20]

Wang R, Zhang Y, Kieffer M, Yu H, Kepinski S, et al. 2016. HSP90 regulates temperature-dependent seedling growth in Arabidopsis by stabilizing the auxin co-receptor F-box protein TIR1. Nature Communications 7:10269

doi: 10.1038/ncomms10269
[21]

Dhaubhadel S, Browning KS, Gallie DR, Krishna P. 2002. Brassinosteroid functions to protect the translational machinery and heat-shock protein synthesis following thermal stress. The Plant Journal 29(6):681−91

doi: 10.1046/j.1365-313x.2002.01257.x
[22]

Sadura I, Libik-Konieczny M, Jurczyk B, Gruszka D, Janeczko A. 2020. Plasma membrane ATPase and the aquaporin HvPIP1 in barley brassinosteroid mutants acclimated to high and low temperature. Journal of Plant Physiology 244:153090

doi: 10.1016/j.jplph.2019.153090
[23]

Skalák J, Černý M, Jedelský P, Dobrá J, Ge E, et al. 2016. Stimulation of ipt overexpression as a tool to elucidate the role of cytokinins in high temperature responses of Arabidopsis thaliana. Journal of Experimental Botany 67(9):2861−73

doi: 10.1093/jxb/erw129
[24]

Bulgakov VP, Wu HC, Jinn TL. 2019. Coordination of ABA and chaperone signaling in plant stress responses. Trends in Plant Science 24(7):636−51

doi: 10.1016/j.tplants.2019.04.004
[25]

Yao X, Li Y, Chen J, Zhou Z, Wen Y, et al. 2022. Brassinosteroids enhance BES1-required thermomemory in Arabidopsis thaliana. Plant, Cell & Environment 45(12):3492−504

doi: 10.1111/pce.14444
[26]

Pratx L, Crawford T, Bäurle I. 2024. Mechanisms of heat stress-induced transcriptional memory. Current Opinion in Plant Biology 81:102590

doi: 10.1016/j.pbi.2024.102590
[27]

Bäurle I. 2018. Can't remember to forget you: Chromatin-based priming of somatic stress responses. Seminars in Cell & Developmental Biology 83:133−39

doi: 10.1016/j.semcdb.2017.09.032
[28]

Avramova Z. 2015. Transcriptional 'memory' of a stress: transient chromatin and memory (epigenetic) marks at stress-response genes. The Plant Journal 83(1):149−59

doi: 10.1111/tpj.12832.Epub2015Apr15
[29]

Friedrich T, Oberkofler V, Trindade I, Altmann S, Brzezinka K, et al. 2021. Heteromeric HSFA2/HSFA3 complexes drive transcriptional memory after heat stress in Arabidopsis. Nature Communications 12(1):3426

doi: 10.1038/s41467-021-23786-6
[30]

Charng YY, Liu HC, Liu NY, Chi WT, Wang CN, et al. 2007. A heat-inducible transcription factor, HsfA2, is required for extension of acquired thermotolerance in Arabidopsis. Plant Physiology 143(1):251−62

doi: 10.1104/pp.106.091322
[31]

Sedaghatmehr M, Stüwe B, Mueller-Roeber B, Balazadeh S. 2022. Heat shock factor HSFA2 fine-tunes resetting of thermomemory via plastidic metalloprotease FtsH6. Journal of Experimental Botany 73(18):6394−404

doi: 10.1093/jxb/erac257
[32]

Mishra SK, Tripp J, Winkelhaus S, Tschiersch B, Theres K, et al. 2002. In the complex family of heat stress transcription factors, HsfA1 has a unique role as master regulator of thermotolerance in tomato. Genes & Development 16(12):1555−67

doi: 10.1101/gad.228802
[33]

Sedaghatmehr M, Mueller-Roeber B, Balazadeh S. 2016. The plastid metalloprotease FtsH6 and small heat shock protein HSP21 jointly regulate thermomemory in Arabidopsis. Nature Communications 7:12439

doi: 10.1038/ncomms12439
[34]

Wu TY, Juan YT, Hsu YH, Wu SH, Liao HT, et al. 2013. Interplay between heat shock proteins HSP101 and HSA32 prolongs heat acclimation memory posttranscriptionally in Arabidopsis. Plant Physiology 161(4):2075−84

doi: 10.1104/pp.112.212589
[35]

Li Y, Li Y, Liu Y, Wu Y, Xie Q. 2018. The sHSP22 heat shock protein requires the ABI1 protein phosphatase to modulate polar auxin transport and downstream responses. Plant Physiology 176(3):2406−25

doi: 10.1104/pp.17.01206
[36]

Liu H, Able AJ, Able JA. 2022. Priming crops for the future: rewiring stress memory. Trends in Plant Science 27(7):699−716

doi: 10.1016/j.tplants.2021.11.015
[37]

Han D, Yu Z, Lai J, Yang C. 2022. Post-translational modification: a strategic response to high temperature in plants. aBIOTECH 3(1):49−64

doi: 10.1007/s42994-021-00067-w
[38]

Song ZT, Zhang LL, Han JJ, Zhou M, Liu JX. 2021. Histone H3K4 methyltransferases SDG25 and ATX1 maintain heat-stress gene expression during recovery in Arabidopsis. The Plant Journal 105(5):1326−38

doi: 10.1111/tpj.15114
[39]

Lämke J, Brzezinka K, Altmann S, Bäurle I. 2016. A hit-and-run heat shock factor governs sustained histone methylation and transcriptional stress memory. The EMBO Journal 35(2):162−75

doi: 10.15252/embj.201592593
[40]

Sun X, Feng D, Liu M, Qin R, Li Y, et al. 2022. Single-cell transcriptome reveals dominant subgenome expression and transcriptional response to heat stress in Chinese cabbage. Genome Biology 23(1):262

doi: 10.1186/s13059-022-02834-4
[41]

Qiu F, Zheng Y, Lin Y, Woldegiorgis ST, Xu S, et al. 2023. Integrated ATAC-seq and RNA-seq data analysis to reveal OsbZIP14 function in rice in response to heat stress. International Journal of Molecular Sciences 24(6):5619

doi: 10.3390/ijms24065619
[42]

Yang Y, Zhang C, Zhu D, He H, Wei Z, et al. 2022. Identifying candidate genes and patterns of heat-stress response in rice using a genome-wide association study and transcriptome analyses. The Crop Journal 10(6):1633−43

doi: 10.1016/j.cj.2022.02.011
[43]

Yamaguchi N. 2021. Removal of H3K27me3 by JMJ proteins controls plant development and environmental responses in Arabidopsis. Frontiers in Plant Science 12:687416

doi: 10.3389/fpls.2021.687416
[44]

Singh AK, Dhanapal S, Finkelshtein A, Chamovitz DA. 2021. CSN5A subunit of COP9 signalosome is required for resetting transcriptional stress memory after recurrent heat stress in Arabidopsis. Biomolecules 11(5):668

doi: 10.3390/biom11050668
[45]

Sharma M, Sharma M, Jamsheer K M, Laxmi A. 2022. A glucose-target of rapamycin signaling axis integrates environmental history of heat stress through maintenance of transcription-associated epigenetic memory in Arabidopsis. Journal of Experimental Botany 73(20):7083−102

doi: 10.1093/jxb/erac338
[46]

Sun M, Jiang F, Cen B, Huo H, Wu Z. 2019. Antioxidant enzymes act as indicators predicting intension of acquired and maintenance of acquired thermotolerance and the relationships between basal, acquired and maintenance of acquired thermotolerance of tomato. Scientia Horticulturae 247:130−37

doi: 10.1016/j.scienta.2018.12.015
[47]

Oyoshi K, Katano K, Yunose M, Suzuki N. 2020. Memory of 5-min heat stress in Arabidopsis thaliana. Plant Signaling & Behavior 15(8):1778919

doi: 10.1080/15592324.2020.1778919