[1]

Satheesh N, Workneh Fanta S. 2020. Kale: review on nutritional composition, bio-active compounds, anti-nutritional factors, health beneficial properties and value-added products. Cogent Food & Agriculture 6:1811048

doi: 10.1080/23311932.2020.1811048
[2]

Kaur S, Sharma N, Kapoor P, Chunduri V, Pandey AK, et al. 2021. Spotlight on the overlapping routes and partners for anthocyanin transport in plants. Physiologia Plantarum 171:868−81

doi: 10.1111/ppl.13378
[3]

Becerra-Moreno A, Alanís-Garza PA, Mora-Nieves JL, Mora-Mora JP, Jacobo-Velázquez DA. 2014. Kale: an excellent source of vitamin C, pro-vitamin A, lutein and glucosinolates. CyTA − Journal of Food 12:298−303

doi: 10.1080/19476337.2013.850743
[4]

Brown KM, Arthur JR. 2001. Selenium, selenoproteins and human health: a review. Public Health Nutrition 4:593−99

doi: 10.1079/PHN2001143
[5]

Liu X, Zhao Z, Hu C, Zhao X, Guo Z. 2016. Effect of sulphate on selenium uptake and translocation in rape (Brassica napus L.) supplied with selenate or selenite. Plant and Soil 399:295−304

doi: 10.1007/s11104-015-2699-7
[6]

Luo L, Zhang J, Zhang K, Wen Q, Ming K, et al. 2021. Peanut selenium distribution, concentration, speciation, and effects on proteins after exogenous selenium biofortification. Food Chemistry 354:129515

doi: 10.1016/j.foodchem.2021.129515
[7]

Tong M, Zhai K, Duan Y, Xia W, Zhao B, et al. 2024. Selenium alleviates the adverse effects of microplastics on kale by regulating photosynthesis, redox homeostasis, secondary metabolism and hormones. Food Chemistry 450:139349

doi: 10.1016/j.foodchem.2024.139349
[8]

Ding Y, Di X, Norton GJ, Beesley L, Yin X, et al. 2020. Selenite foliar application alleviates arsenic uptake, accumulation, migration and increases photosynthesis of different upland rice varieties. International Journal of Environmental Research and Public Health 17:3621

doi: 10.3390/ijerph17103621
[9]

Nie X, Yang X, He J, Liu P, Shi H, et al. 2023. Bioconversion of inorganic selenium to less toxic selenium forms by microbes: a review. Frontiers in Bioengineering and Biotechnology 11:1167123

doi: 10.3389/fbioe.2023.1167123
[10]

Dong Z, Xiao Y, Wu H. 2021. Selenium accumulation, speciation, and its effect on nutritive value of Flammulina velutipes (Golden needle mushroom). Food Chemistry 350:128667

doi: 10.1016/j.foodchem.2020.128667
[11]

Schrauzer GN. 2003. The nutritional significance, metabolism and toxicology of selenomethionine. Advances in Food and Nutrition Research 47:73−112

doi: 10.1016/s1043-4526(03)47002-2
[12]

Malheiros RSP, Gonçalves FCM, Brito FAL, Zsögön A, Ribeiro DM. 2020. Selenomethionine induces oxidative stress and modifies growth in rice (Oryza sativa L.) seedlings through effects on hormone biosynthesis and primary metabolism. Ecotoxicology and Environmental Safety 189:109942

doi: 10.1016/j.ecoenv.2019.109942
[13]

Gao S, Zhou M, Xu J, Xu F, Zhang W. 2024. The application of organic selenium (SeMet) improve the photosynthetic characteristics, yield and quality of hybrid rice. Plant Physiology and Biochemistry 208:108457

doi: 10.1016/j.plaphy.2024.108457
[14]

Sun X, Yu X, Zhou G, Han G, Jiang B, et al. 2022. Effects of selenomethionine on antioxidant level and tryptophan metabolism of 'Sunshine Rose' grape. China Fruits 2:48−52 (in Chinese)

doi: 10.16626/j.cnki.issn1000-8047.2022.02.009
[15]

Toaldo IM, Fogolari O, Pimentel GC, Santos de Gois J, Borges DLG, et al. 2013. Effect of grape seeds on the polyphenol bioactive content and elemental composition by ICP-MS of grape juices from Vitis labrusca L. LWT − Food Science and Technology 53:1−8

doi: 10.1016/j.lwt.2013.02.028
[16]

Ashenafi EL, Nyman MC, Holley JM, Mattson NS, Rangarajan A. 2022. Phenotypic plasticity and nutritional quality of three kale cultivars (Brassica oleracea L. var. acephala) under field, greenhouse, and growth chamber environments. Environmental and Experimental Botany 199:104895

doi: 10.1016/j.envexpbot.2022.104895
[17]

Huang D, Li C, Chen Q, Xie X, Fu X, et al. 2022. Identification of polyphenols from Rosa roxburghii Tratt pomace and evaluation of in vitro and in vivo antioxidant activity. Food Chemistry 377:131922

doi: 10.1016/j.foodchem.2021.131922
[18]

Yu S, Duan Z, Li P, Wang S, Guo L, et al. 2022. Protective effect of polyphenols purified from Mallotus oblongfolius on ethanol-induced gastric mucosal injury by regulating Nrf2 and MAPKs pathways. Antioxidants 11:2452

doi: 10.3390/antiox11122452
[19]

Naik J, Misra P, Trivedi PK, Pandey A. 2022. Molecular components associated with the regulation of flavonoid biosynthesis. Plant Science 317:111196

doi: 10.1016/j.plantsci.2022.111196
[20]

Xu W, Dubos C, Lepiniec L. 2015. Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes. Trends in Plant Science 20:176−85

doi: 10.1016/j.tplants.2014.12.001
[21]

Li C, Yu W, Xu J, Lu X, Liu Y. 2022. Anthocyanin biosynthesis induced by MYB transcription factors in plants. International Journal of Molecular Sciences 23:11701

doi: 10.3390/ijms231911701
[22]

An JP, Xu RR, Wang XN, Zhang XW, You CX, et al. 2024. MdbHLH162 connects the gibberellin and jasmonic acid signals to regulate anthocyanin biosynthesis in apple. Journal of Integrative Plant Biology 66:265−84

doi: 10.1111/jipb.13608
[23]

Wang J, Zhang H, Tian S, Hao W, Chen K, et al. 2023. The R2R3MYB transcription factors MaMYBF and MaMYB1 regulate flavonoid biosynthesis in grape hyacinth. Plant Physiology and Biochemistry 194:85−95

doi: 10.1016/j.plaphy.2022.11.010
[24]

Mehrtens F, Kranz H, Bednarek P, Weisshaar B. 2005. The Arabidopsis transcription factor MYB12 is a flavonol-specific regulator of phenylpropanoid biosynthesis. Plant Physiology 138(2):1083−96

doi: 10.1104/pp.104.058032
[25]

Lännenpää M. 2014. Heterologous expression of AtMYB12 in kale (Brassica oleracea var. acephala) leads to high flavonol accumulation. Plant Cell Reports 33(8):1377−88

doi: 10.1007/s00299-014-1623-6
[26]

Wang XC, Wu J, Guan ML, Zhao CH, Geng P, et al. 2020. Arabidopsis MYB4 plays dual roles in flavonoid biosynthesis. Plant Journal 101(3):637−52

doi: 10.1111/tpj.14570
[27]

Cao Y, Li K, Li Y, Zhao X, Wang L. 2020. MYB transcription factors as regulators of secondary metabolism in plants. Biology 9(3):61

doi: 10.3390/biology9030061
[28]

Pratyusha DS, Sarada DVL. 2022. MYB transcription factors – master regulators of phenylpropanoid biosynthesis and diverse developmental and stress responses. Plant Cell Reports 41:2245−60

doi: 10.1007/s00299-022-02927-1
[29]

Wu SQ, Wang YX, Beta T, Wang SY, Mendez-Zamora G, et al. 2023. Effect of exogenous melatonin on the isoflavone content and antioxidant properties of soybean sprouts. LWT 175:114498

doi: 10.1016/j.lwt.2023.114498
[30]

Zhao F, Jin J, Yang M, Santiago FEM, Xue J, et al. 2024. Selenium differentially regulates flavonoid accumulation and antioxidant capacities in sprouts of twenty diverse mungbean (Vigna radiata (L.) Wilczek) genotypes. Phyton − International Journal of Experimental Botany 93:611−25

doi: 10.32604/phyton.2024.048295
[31]

Cao J, Jiang W, Zhao Y. 2007. Experiment Guidance of Postharvest Physiology and Biochemistry of Fruits and Vegetables. Beijing: China Light Industry Press. pp. 44−47

[32]

Sun X, Guo Y, Yu X, Zhou G, Zhou X. 2020. Effects of selenomethionine on antioxidant capacity of grape seedlings two cultivars. Northern Horticulture 11:13−19 (in Chinese)

[33]

Zhu Y, Wu W, Zhao G, Guo Y. 2018. Progress of selenium biological transformation in animals, plants, and microorganisms. Journal of Agriculture Resources and Environment 35:189−98 (in Chinese)

doi: 10.13254/j.jare.2017.0237
[34]

Gui JY, Rao S, Huang X, Liu X, Cheng S, et al. 2022. Interaction between selenium and essential micronutrient elements in plants: a systematic review. Science of The Total Environment 853:158673

doi: 10.1016/j.scitotenv.2022.158673
[35]

Lanza MGDB, dos Reis AR. 2021. Roles of selenium in mineral plant nutrition: ROS scavenging responses against abiotic stresses. Plant Physiology and Biochemistry 164:27−43

doi: 10.1016/j.plaphy.2021.04.026
[36]

Baliyan S, Mukherjee R, Priyadarshini A, Vibhuti A, Gupta A, et al. 2022. Determination of antioxidants by DPPH radical scavenging activity and quantitative phytochemical analysis of Ficus religiosa. Molecules 27:1326

doi: 10.3390/molecules27041326
[37]

Zagoskina NV, Zubova MY, Nechaeva TL, Kazantseva VV, Goncharuk EA, et al. 2023. Polyphenols in plants: structure, biosynthesis, abiotic stress regulation, and practical applications (review). International Journal of Molecular Sciences 24:13874

doi: 10.3390/ijms241813874
[38]

Wu J, Lv S, Zhao L, Gao T, Yu C, et al. 2023. Advances in the study of the function and mechanism of the action of flavonoids in plants under environmental stresses. Planta 257:108

doi: 10.1007/s00425-023-04136-w
[39]

Gao Y, Ji YH, Chen J, Xie L, Wang X, et al. 2025. The effects of exogenous selenomethionine supplementation and deficit irrigation on tomato fruit quality. China Vegetables 1:94−100 (in Chinese)

doi: 10.19928/j.cnki.1000-6346.2025.4018
[40]

Mitsuda N, Ohme-Takagi M. 2009. Functional analysis of transcription factors in Arabidopsis. Plant & Cell Physiology 50:1232−48

doi: 10.1093/pcp/pcp075
[41]

Li J, Han G, Sun C, Sui N. 2019. Research advances of MYB transcription factors in plant stress resistance and breeding. Plant Signaling & Behavior 14:1613131

doi: 10.1080/15592324.2019.1613131
[42]

Chen C, Zhang K, Khurshid M, Li J, He M, et al. 2019. MYB transcription repressors regulate plant secondary metabolism. Critical Reviews in Plant Sciences 38:159−70

doi: 10.1080/07352689.2019.1632542
[43]

Chen G, He W, Guo X, Pan J. 2021. Genome-wide identification, classification and expression analysis of the MYB transcription factor family in Petunia. International Journal of Molecular Sciences 22:4838

doi: 10.3390/ijms22094838
[44]

Zhu K, Fan P, Mo Z, Tan P, Feng G, et al. 2020. Identification, expression and co-expression analysis of R2R3-MYB family genes involved in graft union formation in pecan (Carya illinoinensis). Forests 11:917

doi: 10.3390/f11090917
[45]

Cao Y, Xie L, Ma Y, Ren C, Xing M, et al. 2019. PpMYB15 and PpMYBF1 transcription factors are involved in regulating flavonol biosynthesis in peach fruit. Journal of Agricultural and Food Chemistry 67:644−52

doi: 10.1021/acs.jafc.8b04810
[46]

Naik J, Rajput R, Pucker B, Stracke R, Pandey A. 2021. The R2R3-MYB transcription factor MtMYB134 orchestrates flavonol biosynthesis in Medicago truncatula. Plant Molecular Biology 106:157−72

doi: 10.1007/s11103-021-01135-x
[47]

Liu W, Feng Y, Yu S, Fan Z, Li X, et al. 2021. The flavonoid biosynthesis network in plants. International Journal of Molecular Sciences 22:12824

doi: 10.3390/ijms222312824
[48]

Millard PS, Kragelund BB, Burow M. 2019. R2R3 MYB transcription factors – functions outside the DNA-binding domain. Trends in Plant Science 24:934−46

doi: 10.1016/j.tplants.2019.07.003