[1]

Whitaker VM, Knapp SJ, Hardigan MA, Edger PP, Slovin JP, et al. 2020. A roadmap for research in octoploid strawberry. Horticulture Research 7:33

doi: 10.1038/s41438-020-0252-1
[2]

Finn CE, Retamales JB, Lobos GA, Hancock JF. 2013. The Chilean strawberry (Fragaria chiloensis): over 1000 years of domestication. HortScience 48(4):418−21

doi: 10.21273/HORTSCI.48.4.418
[3]

Faedi W, Baruzzi G. 2016. Strawberry breeding. In Strawberry: Growth, Development and Diseases. UK: CABI. pp. 26−40 doi: 10.1079/9781780646633.0026

[4]

Mabberley D. 2002. Potentilla and Fragaria (Rosaceae) reunited. Telopea 9(4):793−801

doi: 10.7751/telopea20024018
[5]

Kuznetsova LL, Zielke RA, Grout BWW, Baturin SO. 2012. Breeding of pink-flowering ornamental strawberries in Siberia. Acta Horticulturae 937:469−72

doi: 10.17660/ActaHortic.2012.937.57
[6]

Xue L, Dai H, Lei J. 2015. Creating high polyploidy pink-flowered strawberries with improved cold tolerance. Euphytica 206(2):417−26

doi: 10.1007/s10681-015-1499-8
[7]

Xue L, Wang Z, Zhang W, Li Y, Wang J, et al. 2016. Flower pigment inheritance and anthocyanin characterization of hybrids from pink-flowered and white-flowered strawberry. Scientia Horticulturae 200:143−50

doi: 10.1016/j.scienta.2016.01.020
[8]

Chae E, Tan QK, Hill TA, Irish VF. 2008. An Arabidopsis F-box protein acts as a transcriptional co-factor to regulate floral development. Development 135:1235−45

doi: 10.1242/dev.015842
[9]

Wang X, Zhao F, Wu Q, Xing S, Yu Y, et al. 2023. Physiological and transcriptome analyses to infer regulatory networks in flowering transition of Rosa rugosa. Ornamental Plant Research 3(1):4

doi: 10.48130/OPR-2023-0004
[10]

He W, Chen Y, Gao M, Zhao Y, Xu Z, et al. 2018. Transcriptome analysis of Litsea cubeba floral buds reveals the role of hormones and transcription factors in the differentiation process. G3: Genes, Genomes, Genetics 8(4):1103−14

doi: 10.1534/g3.117.300481
[11]

Xu X, Tao J, Xing A, Wu Z, Xu Y, et al. 2022. Transcriptome analysis reveals the roles of phytohormone signaling in tea plant (Camellia sinensis L.) flower development. BMC Plant Biology 22(1):471

doi: 10.1186/s12870-022-03853-w
[12]

Singh N, Sharma A. 2017. Turmeric (Curcuma longa): miRNAs and their regulating targets are involved in development and secondary metabolite pathways. Comptes Rendus. Biologies 340(11−12):481−91

doi: 10.1016/j.crvi.2017.09.009
[13]

Cai H, Yang C, Liu S, Qi H, Wu L, et al. 2019. MiRNA-target pairs regulate adventitious rooting in Populus: a functional role for miR167a and its target auxin response factor 8. Tree Physiology 39:1922−36

doi: 10.1093/treephys/tpz085
[14]

Das R, Mukherjee A, Basak S, Kundu P. 2021. Plant miRNA responses under temperature stress. Plant Gene 28:100317

doi: 10.1016/j.plgene.2021.100317
[15]

Luo Y, Guo Z, Li L. 2013. Evolutionary conservation of microRNA regulatory programs in plant flower development. Developmental Biology 380(2):133−44

doi: 10.1016/j.ydbio.2013.05.009
[16]

Hong Y, Jackson S. 2015. Floral induction and flower formation—the role and potential applications of miRNAs. Plant Biotechnology Journal 13:282−92

doi: 10.1111/pbi.12340
[17]

Vyas L, Ojha N, Sharma R, Pathak H, Sudan J. 2023. Functional aspects of miRNA in flower development and flowering. South African Journal of Botany 156:392−97

doi: 10.1016/j.sajb.2023.03.034
[18]

Silva GFF, Silva EM, Correa JPO, Vicente MH, Jiang N, et al. 2019. Tomato floral induction and flower development are orchestrated by the interplay between gibberellin and two unrelated microRNA-controlled modules. New Phytologist 221(3):1328−44

doi: 10.1111/nph.15492
[19]

Sun X, Wang M, Leng X, Zhang K, Liu G, et al. 2020. Characterization of the regulation mechanism of grapevine microRNA172 family members during flower development. BMC Plant Biology 20(1):409

doi: 10.1186/s12870-020-02627-6
[20]

Yoshikawa M, Peragine A, Park MY, Poethig RS. 2005. A pathway for the biogenesis of trans-acting siRNAs in Arabidopsis. Genes & Development 19(18):2164−75

doi: 10.1101/gad.1352605
[21]

Vaucheret H, Vazquez F, Crété P, Bartel DP. 2004. The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes & Development 18(10):1187−97

doi: 10.1101/gad.1201404
[22]

Yue J, Liu Z, Zhao C, Zhao J, Zheng Y, et al. 2022. Comparative transcriptome analysis uncovers the regulatory roles of microRNAs involved in petal color change of pink-flowered strawberry. Frontiers in Plant Science 13:854508

doi: 10.3389/fpls.2022.854508
[23]

Xue L, Wang J, Zhao J, Zheng Y, Wang HF, et al. 2019. Study on cyanidin metabolism in petals of pink-flowered strawberry based on transcriptome sequencing and metabolite analysis. BMC Plant Biology 19(1):423

doi: 10.1186/s12870-019-2048-8
[24]

White EJ, Venter M, Hiten NF, Burger JT. 2008. Modified Cetyltrimethylammonium bromide method improves robustness and versatility: the benchmark for plant RNA extraction. Biotechnology Journal 3(11):1424−28

doi: 10.1002/biot.200800207
[25]

Chen C, Wu Y, Li J, Wang X, Zeng Z, et al. 2023. TBtools-II: a "one for all, all for one" bioinformatics platform for biological big-data mining. Molecular Plant 16(11):1733−42

doi: 10.1016/j.molp.2023.09.010
[26]

Li G, Chen C, Chen P, Meyers BC, Xia R. 2024. sRNAminer: a multifunctional toolkit for next-generation sequencing small RNA data mining in plants. Science Bulletin 69(6):784−91

doi: 10.1016/j.scib.2023.12.049
[27]

Kozomara A, Birgaoanu M, Griffiths-Jones S. 2019. miRBase: from microRNA sequences to function. Nucleic Acids Research 47(D1):D155−D162

doi: 10.1093/nar/gky1141
[28]

Schaart J, Salentijn E, Krens F. 2002. Tissue-specific expression of the β-glucuronidase reporter gene in transgenic strawberry (Fragaria × ananassa) plants. Plant Cell Reports 21(4):313−19

doi: 10.1007/s00299-002-0514-4
[29]

Rao X, Huang X, Zhou Z, Lin X. 2013. An improvement of the 2−ΔΔCᴛ method for quantitative real-time polymerase chain reaction data analysis. Biostatistics, Bioinformatics and Biomathematics 3:71−85

[30]

Liu J, Wang J, Wang M, Zhao J, Zheng Y, et al. 2021. Genome-wide analysis of the R2R3-MYB gene family in Fragaria × ananassa and its function identification during anthocyanins biosynthesis in pink-flowered strawberry. Frontiers in Plant Science 12:702160

doi: 10.3389/fpls.2021.702160
[31]

Cherubino Ribeiro TH, Baldrich P, de Oliveira RR, Fernandes-Brum CN, Mathioni SM, et al. 2024. The floral development of the allotetraploid Coffea arabica L. correlates with a small RNA dynamic reprogramming. The Plant Journal 118(6):1848−63

doi: 10.1111/tpj.16713
[32]

Salvi E, Moyroud E. 2025. Building beauty: understanding how hormone signaling regulates petal patterning and morphogenesis. The Plant Journal 121(6):e70101

doi: 10.1111/tpj.70101
[33]

López M, Oliveira R, Azevedo L, Santos I, Ribeiro T, et al. 2024. The contrasting flowering-time among coffee genotypes is associated with ectopic and differential expressions of genes related to environment, floral development, and hormonal regulation. bioRxiv:2024.08.02.605191

doi: 10.1101/2024.08.02.605191v1
[34]

Singh D, Sharma S, Jose-Santhi J, Kalia D, Singh RK. 2023. Hormones regulate the flowering process in saffron differently depending on the developmental stage. Frontiers in Plant Science 14:1107172

doi: 10.3389/fpls.2023.1107172
[35]

Xue C, Wen Y, Sheng S, Gao Y, Zhang Y, et al. 2024. Hormonal regulation and transcriptomic insights into flower development in Hydrangea paniculata 'Vanilla strawberry'. Plants 13(4):486

doi: 10.3390/plants13040486
[36]

Wang T, Yang B, Guan Q, Chen X, Zhong Z, et al. 2019. Transcriptional regulation of Lonicera japonica Thunb. during flower development as revealed by comprehensive analysis of transcription factors. BMC Plant Biology 19(1):198

doi: 10.1186/s12870-019-1803-1
[37]

Liu J, Qiao Y, Li C, Hou B. 2023. The NAC transcription factors play core roles in flowering and ripening fundamental to fruit yield and quality. Frontiers in Plant Science 14:1095967

doi: 10.3389/fpls.2023.1095967
[38]

Ji X, Xin Z, Yuan Y, Wang M, Lu X, et al. 2023. A petunia transcription factor, PhOBF1, regulates flower senescence by modulating gibberellin biosynthesis. Horticulture Research 10(4):uhad022

doi: 10.1093/hr/uhad022
[39]

Waheed S, Zeng L. 2020. The critical role of miRNAs in regulation of flowering time and flower development. Genes 11(3):319

doi: 10.3390/genes11030319
[40]

Wu G, Poethig RS. 2006. Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development 133:3539−47

doi: 10.1242/dev.02521
[41]

Zheng C, Ye M, Sang M, Wu R. 2019. A regulatory network for miR156-SPL module in Arabidopsis thaliana. International Journal of Molecular Sciences 20:6166

doi: 10.3390/ijms20246166
[42]

Zhang T, Wang J, Zhou C. 2015. The role of miR156 in developmental transitions in Nicotiana tabacum. Science China Life Sciences 58(3):253−60

doi: 10.1007/s11427-015-4808-5
[43]

Jiang J, Zhu H, Li N, Batley J, Wang Y. 2022. The miR393-target module regulates plant development and responses to biotic and abiotic stresses. International Journal of Molecular Sciences 23(16):9477

doi: 10.3390/ijms23169477
[44]

Luo P, Di D, Wu L, Yang J, Lu Y, et al. 2022. microRNAs are involved in regulating plant development and stress response through fine-tuning of TIR1/AFB-dependent auxin signaling. International Journal of Molecular Sciences 23(1):510

doi: 10.3390/ijms23010510
[45]

Parry G, Calderon-Villalobos LI, Prigge M, Peretc B, Dharmasiria S, et al. 2009. Complex regulation of the TIR1/AFB family of auxin receptors. Proceedings of the National Academy of Sciences of the United States of America 106:22540−45

doi: 10.1073/pnas.0911967106
[46]

Liu Y, Teng C, Xia R, Meyers BC. 2020. PhasiRNAs in plants: their biogenesis, genic sources, and roles in stress responses, development, and reproduction. The Plant Cell 32:3059−80

doi: 10.1105/tpc.20.00335
[47]

Pokhrel S, Huang K, Bélanger S, Zhan J, Caplan JL, et al. 2021. Pre-meiotic 21-nucleotide reproductive phasiRNAs emerged in seed plants and diversified in flowering plants. Nature Communications 12(1):4941

doi: 10.1038/s41467-021-25128-y
[48]

Fei Q, Xia R, Meyers BC. 2013. Phased, secondary, small interfering RNAs in posttranscriptional regulatory networks. The Plant Cell 25(7):2400−15

doi: 10.1105/tpc.113.114652
[49]

Xia R, Chen C, Pokhrel S, Ma W, Huang K, et al. 2019. 24-nt reproductive phasiRNAs are broadly present in angiosperms. Nature Communications 10(1):627

doi: 10.1038/s41467-019-08543-0