[1]

Wang ZL, Wang S, Kuang Y, Hu ZM, Qiao X, et al. 2018. A comprehensive review on phytochemistry, pharmacology, and flavonoid biosynthesis of Scutellaria baicalensis. Pharmaceutical Biology 56:465−84

doi: 10.1080/13880209.2018.1492620
[2]

Shang X, He X, He X, Li M, Zhang R, et al. 2010. The genus Scutellaria an ethnopharmacological and phytochemical review. Journal of Ethnopharmacology 128:279−313

doi: 10.1016/j.jep.2010.01.006
[3]

Zheng M, Fang Y, Zhao Q. 2023. Comparative analysis of flavones from six commonly used Scutellaria species. Medicinal Plant Biology 2:12

doi: 10.48130/mpb-2023-0012
[4]

Zhao Q, Yang J, Cui MY, Liu J, Fang Y, et al. 2019. The reference genome sequence of Scutellaria baicalensis provides insights into the evolution of wogonin biosynthesis. Molecular Plant 12:935−50

doi: 10.1016/j.molp.2019.04.002
[5]

Pei T, Zhu S, Liao W, Fang Y, Liu J, et al. 2023. Gap-free genome assembly and CYP450 gene family analysis reveal the biosynthesis of anthocyanins in Scutellaria baicalensis. Horticulture Research 10:uhad 235

[6]

Amjad E, Sokouti B, Asnaashari S. 2022. A systematic review of anti-cancer roles and mechanisms of kaempferol as a natural compound. Cancer Cell International 22:260

doi: 10.1186/s12935-022-02673-0
[7]

Wang X, Sun Y, Zhao F, Yin Y, Ni W, et al. 2023. Research progress on mechanism and pharmacological activities of galangin (高良姜素的药理作用及机制研究进展). Pharmacology and Clinics of Chinese Materia Medica (中药药理与临床) 39:115−20 (in Chinese)

doi: 10.13412/j.cnki.zyyl.20220424.001
[8]

Kawai Y, Ono E, Mizutani M. 2014. Evolution and diversity of the 2-oxoglutarate-dependent dioxygenase superfamily in plants. Plant Journal 78:328−43

doi: 10.1111/tpj.12479
[9]

Britsch L, Heller W, Grisebach H. 1981. Conversion of flavanone to flavone, dihydroflavonol and flavonol with an enzyme system from cell cultures of parsley. Zeitschrift Für Naturforschung C 36:742−50

doi: 10.1515/znc-1981-9-1009
[10]

Owens DK, Alerding AB, Crosby KC, Bandara AB, Westwood JH, et al. 2008. Functional analysis of a predicted flavonol synthase gene family in Arabidopsis. Plant Physiology 147:1046−61

doi: 10.1104/pp.108.117457
[11]

Lukacin R, Wellmann F, Britsch L, Martens S, Matern U. 2003. Flavonol synthase from Citrus unshiu is a bifunctional dioxygenase. Phytochemistry 62:287−92

doi: 10.1016/S0031-9422(02)00567-8
[12]

Park S, Kim DH, Park BR, Lee JY, Lim SH. 2019. Molecular and functional characterization of Oryza sativa flavonol synthase (OsFLS), a bifunctional dioxygenase. Journal of Agricultural and Food Chemistry 67:7399−409

doi: 10.1021/acs.jafc.9b02142
[13]

Park S, Kim DH, Lee JY, Ha SH, Lim SH. 2017. Comparative analysis of two flavonol synthases from different-colored onions provides insight into flavonoid biosynthesis. Journal of Agricultural and Food Chemistry 65:5287−98

doi: 10.1021/acs.jafc.7b01036
[14]

Tamura K, Stecher G, Kumar S. 2021. MEGA11: molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution 38:3022−27

doi: 10.1093/molbev/msab120
[15]

Pompon D, Louerat B, Bronine A, Urban P. 1996. Yeast expression of animal and plant P450s in optimized redox environments. Methods in Enzymology 272:51−64

doi: 10.1016/s0076-6879(96)72008-6
[16]

Zhu S, Cui M, Zhao Q. 2024. Characterization of the 2ODD genes of DOXC subfamily and its members involved in flavonoids biosynthesis in Scutellaria baicalensis. BMC Plant Biology 24:804

doi: 10.1186/s12870-024-05519-1
[17]

Xu H, Park NI, Li X, Kim YK, Lee SY, et al. 2010. Molecular cloning and characterization of phenylalanine ammonia-lyase, cinnamate 4-hydroxylase and genes involved in flavone biosynthesis in Scutellaria baicalensis. Bioresource Technology 101:9715−22

doi: 10.1016/j.biortech.2010.07.083
[18]

Park NI, Xu H, Li X, Kim SJ, Park SU. 2011. Enhancement of flavone levels through overexpression of chalcone isomerase in hairy root cultures of Scutellaria baicalensis. Functional & Integrative Genomics 11:491−96

doi: 10.1007/s10142-011-0229-0
[19]

Ji D, Li J, Xu F, Ren Y, Wang Y. 2021. Improve the biosynthesis of baicalein and scutellarein via manufacturing self-assembly enzyme reactor in vivo. ACS Synthetic Biology 10:1087−94

doi: 10.1021/acssynbio.0c00606
[20]

Qian Z, Yu J, Chen X, Kang Y, Ren Y, et al. 2022. De novo production of plant 4'-deoxyflavones baicalein and oroxylin a from ethanol in crabtree-negative yeast. ACS Synthetic Biology 11:1600−12

doi: 10.1021/acssynbio.2c00026
[21]

Tim Cushnie TP, Lamb AJ. 2005. Detection of galangin-induced cytoplasmic membrane damage in Staphylococcus aureus by measuring potassium loss. Journal of Ethnopharmacology 101:243−48

doi: 10.1016/j.jep.2005.04.014
[22]

Heo MY, Sohn SJ, Au WW. 2001. Anti-genotoxicity of galangin as a cancer chemopreventive agent candidate. Mutation Research 488:135−50

doi: 10.1016/S1383-5742(01)00054-0