[1]

Reiter RJ, Tan DX, Galano A. 2014. Melatonin: exceeding expectations. Physiology 29:325−33

doi: 10.1152/physiol.00011.2014
[2]

Mukherjee S. 2018. Novel perspectives on the molecular crosstalk mechanisms of serotonin and melatonin in plants. Plant Physiology and Biochemistry 132:33−45

doi: 10.1016/j.plaphy.2018.08.031
[3]

Byeon Y, Back K. 2014. An increase in melatonin in transgenic rice causes pleiotropic phenotypes, including enhanced seedling growth, delayed flowering, and low grain yield. Journal of Pineal Research 56:408−14

doi: 10.1111/jpi.12129
[4]

Dai L, Li J, Harmens H, Zheng X, Zhang C. 2020. Melatonin enhances drought resistance by regulating leaf stomatal behaviour, root growth and catalase activity in two contrasting rapeseed (Brassica napus L.) genotypes. Plant Physiology and Biochemistry 149:86−95

doi: 10.1016/j.plaphy.2020.01.039
[5]

Wang SY, Shi XC, Wang R, Wang HL, Liu F, et al. 2020. Melatonin in fruit production and postharvest preservation: a review. Food Chemistry 320:126642

doi: 10.1016/j.foodchem.2020.126642
[6]

Tan D, Hardeland R, Manchester LC, Korkmaz A, Ma S, et al. 2012. Functional roles of melatonin in plants, and perspectives in nutritional and agricultural science. Journal of Experimental Botany 63:577−97

doi: 10.1093/jxb/err256
[7]

Gong X, Shi S, Dou F, Song Y, Ma F, et al. 2017. Exogenous melatonin alleviates alkaline stress in Malus hupehensis rehd. by regulating the biosynthesis of polyamines. Molecules 22:1542

doi: 10.3390/molecules22091542
[8]

Yang WJ, Du YT, Zhou YB, Chen J, Xu ZS, et al. 2019. Overexpression of TaCOMT improves melatonin production and enhances drought tolerance in transgenic Arabidopsis. International Journal of Molecular Sciences 20:652

doi: 10.3390/ijms20030652
[9]

Xu W, Cai SY, Zhang Y, Wang Y, Ahammed GJ, et al. 2016. Melatonin enhances thermotolerance by promoting cellular protein protection in tomato plants. Journal of Pineal Research 61(4):457−69

doi: 10.1111/jpi.12359
[10]

da S Ribeiro JE, da Silva AGC, dos S Coêlho E, de A Oliveira PH, da Silva EF, et al. 2024. Melatonin mitigates salt stress effects on the growth and production aspects of radish. Revista Brasileira de Engenharia Agrícola e Ambiental 28:e279006

doi: 10.1590/1807-1929/agriambi.v28n4e279006
[11]

Zhang H, Qiu Y, Ji Y, Wu X, Xu X, et al. 2023. Melatonin promotes seed germination via regulation of ABA signaling under low temperature stress in cucumber. Journal of Plant Growth Regulation 42:2232−45

doi: 10.1007/s00344-022-10698-y
[12]

Li S, Xu Y, Bi Y, Zhang B, Shen S, et al. 2019. Melatonin treatment inhibits gray mold and induces disease resistance in cherry tomato fruit during postharvest. Postharvest Biology and Technology 157:110962

doi: 10.1016/j.postharvbio.2019.110962
[13]

Yan Y, Sun S, Zhao N, Yang W, Shi Q, et al. 2019. COMT1 overexpression resulting in increased melatonin biosynthesis contributes to the alleviation of carbendazim phytotoxicity and residues in tomato plants. Environmental Pollution 252:51−61

doi: 10.1016/j.envpol.2019.05.052
[14]

Nawaz MA, Jiao Y, Chen C, Shireen F, Zheng Z, et al. 2018. Melatonin pretreatment improves vanadium stress tolerance of watermelon seedlings by reducing vanadium concentration in the leaves and regulating melatonin biosynthesis and antioxidant-related gene expression. Journal of Plant Physiology 220:115−27

doi: 10.1016/j.jplph.2017.11.003
[15]

Back K, Tan DX, Reiter RJ. 2016. Melatonin biosynthesis in plants: multiple pathways catalyze tryptophan to melatonin in the cytoplasm or chloroplasts. Journal of Pineal Research 61:426−37

doi: 10.1111/jpi.12364
[16]

Huangfu L, Chen R, Lu Y, Zhang E, Miao J, et al. 2022. OsCOMT, encoding a caffeic acid O-methyltransferase in melatonin biosynthesis, increases rice grain yield through dual regulation of leaf senescence and vascular development. Plant Biotechnology Journal 20:1122−39

doi: 10.1111/pbi.13794
[17]

Zhao D, Yao Z, Zhang J, Zhang R, Mou Z, et al. 2021. Melatonin synthesis genes N-acetylserotonin methyltransferases evolved into caffeic acid O-methyltransferases and both assisted in plant terrestrialization. Journal of Pineal Research 71:e12737

doi: 10.1111/jpi.12737
[18]

Byeon Y, Choi GH, Lee HY, Back K. 2015. Melatonin biosynthesis requires N-acetylserotonin methyltransferase activity of caffeic acid O-methyltransferase in riceOpen Access. Journal of Experimental Botany 66:6917−25

doi: 10.1093/jxb/erv396
[19]

Lee HY, Byeon Y, Lee K, Lee HJ, Back K. 2014. Cloning of Arabidopsis serotonin N-acetyltransferase and its role with caffeic acid O-methyltransferase in the biosynthesis of melatonin in vitro despite their different subcellular localizations. Journal of Pineal Research 57:418−26

doi: 10.1111/jpi.12181
[20]

Liu DD, Sun XS, Liu L, Shi HD, Chen SY, et al. 2019. Overexpression of the melatonin synthesis-related gene SlCOMT1 improves the resistance of tomato to salt stress. Molecules 24:1514

doi: 10.3390/molecules24081514
[21]

Zhu J, Lou Y, Xu X, Yang ZN. 2011. A genetic pathway for tapetum development and function in Arabidopsis. Journal of Integrative Plant Biology 53:892−900

doi: 10.1111/j.1744-7909.2011.01078.x
[22]

Hoedemaekers K, Derksen J, Hoogstrate SW, Wolters-Arts M, Oh SA, et al. 2015. BURSTING POLLEN is required to organize the pollen germination plaque and pollen tube tip in Arabidopsis thaliana. New Phytologist 206:255−67

doi: 10.1111/nph.13200
[23]

Yan MY, Xie DL, Cao JJ, Xia XJ, Shi K, et al. 2020. Brassinosteroid-mediated reactive oxygen species are essential for tapetum degradation and pollen fertility in tomato. The Plant Journal 102:931−47

doi: 10.1111/tpj.14672
[24]

McCormick S. 2004. Control of male gametophyte development. The Plant Cell 16:S142−S153

doi: 10.1105/tpc.016659
[25]

Jeong HJ, Kang JH, Zhao M, Kwon JK, Choi HS, et al. 2014. Tomato Male sterile 1035 is essential for pollen development and meiosis in anthers. Journal of Experimental Botany 65:6693−709

doi: 10.1093/jxb/eru389
[26]

Phan HA, Iacuone S, Li SF, Parish RW. 2011. The MYB80 transcription factor is required for pollen development and the regulation of tapetal programmed cell death in Arabidopsis thaliana. The Plant Cell 23:2209−24

doi: 10.1105/tpc.110.082651
[27]

Zhang Z, Hu M, Xu W, Wang Y, Huang K, et al. 2021. Understanding the molecular mechanism of anther development under abiotic stresses. Plant Molecular Biology 105:1−10

doi: 10.1007/s11103-020-01074-z
[28]

Ye J, Xu M. 2012. Actin bundler PLIM2s are involved in the regulation of pollen development and tube growth in Arabidopsis. Journal of Plant Physiology 169:516−22

doi: 10.1016/j.jplph.2011.11.015
[29]

Cecchetti V, Altamura MM, Falasca G, Costantino P, Cardarelli M. 2008. Auxin regulates Arabidopsis anther dehiscence, pollen maturation, and filament elongation. The Plant Cell 20:1760−74

doi: 10.1105/tpc.107.057570
[30]

Chen L, Yang D, Zhang Y, Wu L, Zhang Y, et al. 2018. Evidence for a specific and critical role of mitogen-activated protein kinase 20 in uni-to-binucleate transition of microgametogenesis in tomato. New Phytologist 219:176−94

doi: 10.1111/nph.15150
[31]

Yu S, Feng Q, Xie H, Li S, Zhang Y, et al. 2017. Reactive oxygen species mediate tapetal programmed cell death in tobacco and tomato. BMC Plant Biology 17:76

doi: 10.1186/s12870-017-1025-3
[32]

Kolář J, Johnson CH, Macháčková I. 2003. Exogenously applied melatonin (N-acetyl-5-methoxytryptamine) affects flowering of the short-day plant Chenopodium rubrum . Physiologia Plantarum 118:605−12

doi: 10.1034/j.1399-3054.2003.00114.x
[33]

Machácčková I, Krekule J. 2002. Sixty-five years of searching for the signals that trigger flowering. Russian Journal of Plant Physiology 49:451−59

doi: 10.1023/A:1016395405884
[34]

Shi H, Wei Y, Wang Q, Reiter RJ, He C. 2016. Melatonin mediates the stabilization of DELLA proteins to repress the floral transition in Arabidopsis. Journal of Pineal Research 60:373−79

doi: 10.1111/jpi.12320
[35]

Murch SJ, Alan AR, Cao J, Saxena PK. 2009. Melatonin and serotonin in flowers and fruits of Datura metel L. Journal of Pineal Research 47:277−83

doi: 10.1111/j.1600-079X.2009.00711.x
[36]

Zhao D, Wang R, Liu D, Wu Y, Sun J, et al. 2018. Melatonin and expression of tryptophan decarboxylase gene (TDC) in herbaceous peony (Paeonia lactiflora Pall) flowers. Molecules 23:1164

doi: 10.3390/molecules23051164
[37]

Aghdam MS, Jannatizadeh A, Nojadeh MS, Ebrahimzadeh A. 2019. Exogenous melatonin ameliorates chilling injury in cut Anthurium flowers during low temperature storage. Postharvest Biology and Technology 148:184−91

doi: 10.1016/j.postharvbio.2018.11.008
[38]

Qi ZY, Wang KX, Yan MY, Kanwar MK, Li DY, et al. 2018. Melatonin alleviates high temperature-induced pollen abortion in Solanum lycopersicum. Molecules 23:386

doi: 10.3390/molecules23020386
[39]

Chakraborty S, Sen Raychaudhuri S. 2023. Melatonin alleviates the toxic effects of lead by modulating the antioxidative properties in Plantago ovata seedlings. Acta Physiologiae Plantarum 46:3

doi: 10.1007/s11738-023-03626-4
[40]

Zhang H, Wang L, Shi K, Shan D, Zhu Y, et al. 2019. Apple tree flowering is mediated by low level of melatonin under the regulation of seasonal light signal. Journal of Pineal Research 66:e12551

doi: 10.1111/jpi.12551
[41]

Lee HY, Lee K, Back K. 2019. Knockout of Arabidopsis serotonin N-acetyltransferase-2 reduces melatonin levels and delays flowering. Biomolecules 9:712

doi: 10.3390/biom9110712
[42]

Ye X. 2022. Roles of a caffeic acid-O-methyltransferase in regulating leaf senescence in tomato. Thesis. GuiZhou University, China. doi: 10.27047/d.cnki.ggudu.2022.000390

[43]

Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCᴛ Method. Methods 25:402−8

doi: 10.1006/meth.2001.1262
[44]

Sun S, Wen D, Yang W, Meng Q, Shi Q, et al. 2020. Overexpression of caffeic acid O-methyltransferase 1 (COMT1) increases melatonin level and salt stress tolerance in tomato plant. Journal of Plant Growth Regulation 39:1221−35

doi: 10.1007/s00344-019-10058-3
[45]

Ahammed GJ, Xu W, Liu A, Chen S. 2019. Endogenous melatonin deficiency aggravates high temperature-induced oxidative stress in Solanum lycopersicum L. Environmental and Experimental Botany 161:303−11

doi: 10.1016/j.envexpbot.2018.06.006
[46]

He Z, Wen C, Xu W. 2023. Effects of endogenous melatonin deficiency on the growth, productivity, and fruit quality properties of tomato plants. Horticulturae 9:851

doi: 10.3390/horticulturae9080851
[47]

Pan C, Yang D, Zhao X, Liu Y, Li M, et al. 2021. PIF4 negatively modulates cold tolerance in tomato anthers via temperature-dependent regulation of tapetal cell death. The Plant Cell 33:2320−39

doi: 10.1093/plcell/koab120
[48]

Li H, Guo Y, Lan Z, Zhang Z, Ahammed GJ, et al. 2021. Melatonin antagonizes ABA action to promote seed germination by regulating Ca2+ efflux and H2O2 accumulation. Plant Science 303:110761

doi: 10.1016/j.plantsci.2020.110761
[49]

Chen L, Liu L, Lu B, Ma T, Jiang D, et al. 2020. Exogenous melatonin promotes seed germination and osmotic regulation under salt stress in cotton (Gossypium hirsutum L.). PLoS One 15:e0228241

doi: 10.1371/journal.pone.0228241
[50]

Xiao S, Liu L, Wang H, Li D, Bai Z, et al. 2019. Exogenous melatonin accelerates seed germination in cotton (Gossypium hirsutum L.). PLoS One 14:e0216575

doi: 10.1371/journal.pone.0216575
[51]

Wilson ZA, Zhang DB. 2009. From Arabidopsis to rice: pathways in pollen developmentFree. Journal of Experimental Botany 60:1479−92

doi: 10.1093/jxb/erp095
[52]

Brukhin V, Hernould M, Gonzalez N, Chevalier C, Mouras A. 2003. Flower development schedule in tomato Lycopersicon esculentum cv. sweet cherry . Sexual Plant Reproduction 15:311−20

doi: 10.1007/s00497-003-0167-7
[53]

Li H, Yuan Z, Vizcay-Barrena G, Yang C, Liang W, et al. 2011. PERSISTENT TAPETAL CELL1 encodes a PHD-finger protein that is required for tapetal cell death and pollen development in rice. Plant Physiology 156:615−30

doi: 10.1104/pp.111.175760
[54]

Goldberg RB. 1993. Anther development: basic principles and practical applications. The Plant Cell 10:1217−29

doi: 10.1105/tpc.5.10.1217