[1]

Son SR, Yoon YS, Hong JP, Kim JM, Lee KT, et al. 2022. Chemical constituents of the roots of Polygala tenuifolia and their anti-inflammatory effects. Plants 11:3307

doi: 10.3390/plants11233307
[2]

Cao Q, Jiang Y, Cui SY, Tu PF, Chen YM, et al. 2016. Tenuifolin, a saponin derived from Radix Polygalae, exhibits sleep-enhancing effects in mice. Phytomedicine 23:1797−805

doi: 10.1016/j.phymed.2016.10.015
[3]

Kim KS, Lee DS, Bae GS, Park SJ, Kang DG, et al. 2013. The inhibition of JNK MAPK and NF-κB signaling by tenuifoliside A isolated from Polygala tenuifolia in lipopolysaccharide-induced macrophages is associated with its anti-inflammatory effect. European Journal of Pharmacology 721:267−76

doi: 10.1016/j.ejphar.2013.09.026
[4]

Zhang D, Wang X, Li R, Wang L, Zhou Z, et al. 2020. Extract of the aerial part of Polygala tenuifolia attenuates d-galactose/NaNO2-induced learning and memory impairment in mice. Planta Medica 86:1389−99

doi: 10.1055/a-1212-3212
[5]

Kessler A, Kalske A. 2018. Plant secondary metabolite diversity and species interactions. Annual Review of Ecology, Evolution, and Systematics 49:115−38

doi: 10.1146/annurev-ecolsys-110617-062406
[6]

Mishra MK, Pandey S, Misra P, Niranjan A, Srivastava A et al. 2020. An efficient protocol for clonal regeneration and excised root culture with enhanced alkaloid content in Thalictrum foliolosum DC.—an endemic and important medicinal plant of temperate Himalayan region. Industrial Crops and Products 152:112504

doi: 10.1016/j.indcrop.2020.112504
[7]

Nabet N, Gilbert-López B, Madani K, Herrero M, Ibáñez E et al. 2019. Optimization of microwave-assisted extraction recovery of bioactive compounds from Origanum glandulosum and Thymus fontanesii. Industrial Crops and Products 129:395−404

doi: 10.1016/j.indcrop.2018.12.032
[8]

Bai C, Yang J, Cao B, Xue Y, Gao P, et al. 2020. Growth years and post-harvest processing methods have critical roles on the contents of medicinal active ingredients of Scutellaria baicalensis. Industrial Crops and Products 158:112985

doi: 10.1016/j.indcrop.2020.112985
[9]

Gao H, Wang Z, Li Y, Qian Z. 2011. Overview of the quality standard research of traditional Chinese medicine. Frontiers of Medicine 5:195−202

doi: 10.1007/s11684-011-0134-x
[10]

Qiu S, Tu Y, Huang D, Dong Z, Huang M, et al. 2021. Selection of appropriate post-harvest processing methods based on the metabolomics analysis of Salvia miltiorrhiza Bunge. Food Research International 144:110366

doi: 10.1016/j.foodres.2021.110366
[11]

Peng S, Shu F, Lu Y, Fan D, Zheng D, et al. 2024. Quasi-targeted metabolomics revealed isoliquiritigenin and lauric acid associated with resistance to tobacco black shank. Plant Signaling & Behavior 19:2332019

doi: 10.1080/15592324.2024.2332019
[12]

Wang C, Qiu J, Li G, Wang J, Liu D, et al. 2022. Application and prospect of quasi-targeted metabolomics in age-related hearing loss. Hearing Research 424:108604

doi: 10.1016/j.heares.2022.108604
[13]

Yang Y, Fan B, Mu Y, Li Y, Tong L, et al. 2023. A comparative metabolomics study of polyphenols in highland barley (Hordeum vulgare L.) grains with different colors. Food Research International 174:113672

doi: 10.1016/j.foodres.2023.113672
[14]

Feng Z, Gao Z, Jiao X, Shi J, Wang R. 2020. Widely targeted metabolomic analysis of active compounds at different maturity stages of ‘Hupingzao’ jujube. Journal of Food Composition and Analysis 88:103417

doi: 10.1016/j.jfca.2020.103417
[15]

Vincenzi S, Tolin S, Cocolin L, Rantsiou K, Curioni A, et al. 2012. Proteins and enzymatic activities in Erbaluce grape berries with different response to the withering process. Analytica Chimica Acta, 732:130−36

doi: 10.1016/j.aca.2011.11.058
[16]

Want EJ, Masson P, Michopoulos F, Wilson ID, Theodoridis G, et al. 2012. Global metabolic profiling of animal and human tissues via UPLC-MS. Nature Protocols 8:17−32

doi: 10.1038/nprot.2012.135
[17]

Sun J, Du L, Qu Z, Wang H, Dong S, et al. 2023. Integrated metabolomics and proteomics analysis to study the changes in Scutellaria baicalensis at different growth stages. Food Chemistry 419:136043

doi: 10.1016/j.foodchem.2023.136043
[18]

Xu F, Li G. 2023. Metabolomics reveals the effect of hypobaric treatment on energy metabolism in vibration-injured ‘Huangguan’ pears. Food Chemistry 400:134057

doi: 10.1016/j.foodchem.2022.
[19]

Yang F, Yu H, Chai X, Peng S, Yang J, et al. 2018. Wang, Illumination on "reserving phloem and discarding xylem" and quality evaluation of radix polygalae by determining oligosaccharide esters, saponins, and xanthones. Molecules 23:836

doi: 10.3390/molecules23040836
[20]

Nozad M, Khojastehpour M, Tabasizadeh M, Azizi M, Miraei Ashtiani SH, et al. 2016. Characterization of hot-air drying and infrared drying of spearmint (Mentha spicata L.) leaves. Journal of Food Measurement and Characterization 10:466−73

doi: 10.1007/s11694-016-9325-0
[21]

Guo P, Brand E, Zhao ZZ. 2015. Chinese medicinal processing: a characteristic aspect of the ethnopharmacology of traditional Chinese medicine. In Ethnopharmacology, eds. Heinrich M, Jäger AK. USA: Wiley. pp. 303−16 doi: 10.1002/9781118930717.ch26

[22]

Zhang Q, Yang FQ, Ge L, Hu YJ, Xia ZN. 2017. Recent applications of hydrophilic interaction liquid chromatography in pharmaceutical analysis. Journal of Separation Science 40:49−80

doi: 10.1002/jssc.201600843
[23]

Jin H, Liu Y, Guo Z, Wang J, Zhang X, et al. 2016. Recent development in liquid chromatography stationary phases for separation of Traditional Chinese Medicine components. Journal of Pharmaceutical and Biomedical Analysis 130:336−46

doi: 10.1016/j.jpba.2016.06.008
[24]

Zhu S, Shirakawa A, Shi Y, Yu X, Tamura T, et al. 2018. Impact of different post-harvest processing methods on the chemical compositions of peony root. Journal of Natural Medicines 72:757−67

doi: 10.1007/s11418-018-1214-x
[25]

Cai X, Deng H, Li W, Li H, Li M et al. 2023. Study on fresh processing key technology and quality influence of Cut Ophiopogonis Radix based on multi-index evaluation. Open Life Sciences 18:20220638

doi: 10.1515/biol-2022-0638
[26]

Zhang L, Zhang X, Liang Z. 2022. Post-harvest processing methods have critical roles in the contents of active ingredients of Scutellaria baicalensis Georgi. Molecules 27:8302

doi: 10.3390/molecules27238302
[27]

Xu BX, Diao JW, Zhang XL, Long Y, Wu P, et al. 2018. 远志炮制过程中6种寡糖酯类成分转化机制 [Transformation mechanism of six oligosaccharides in simulated processing of Polygala tenuifolia]. Chinese Traditional Patent Medicine (中成药) 40:1790−94

doi: 10.3969/j.issn.1001-1528.2018.08.024
[28]

Sun X, Song Z, Tang Z, Yu J, Fan X, et al. 2025. Effects of different post-harvest processing methods on changes in the active ingredients of licorice based on LC-MS and plant metabolomics. Phytochemical Analysis 36:419−29

doi: 10.1002/pca.3419
[29]

Zhang X, Jiang S, Sun T, Zhi W, Ding K, et al. 2024. Post-harvest processing methods have critical roles on the contents of active metabolites and pharmacological effects of Astragali Radix. Frontiers in Pharmacology 15:1489777

doi: 10.3389/fphar.2024.1489777
[30]

Shi YH, Zhu S, Ge YW, He YM, Kazuma K, et al. 2016. Monoterpene derivatives with anti-allergic activity from red peony root, the root of Paeonia lactiflora. Fitoterapia 108:55−61

doi: 10.1016/j.fitote.2015.11.011
[31]

Zhang WW, Zhang ZP, Dong X, Ren YX, Cai CF. 2021. 远志产地初加工过程中黄曲霉污染调查及病发规律研究[The contamination and occurrence regularity of Polygalae Radix aspergillus disease in initial processing]. Lishizhen Medicine and Materia Medica Research (时珍国医国药) 32:603−6

doi: 10.3969/j.issn.1008-0805.2021.03.24
[32]

Cao Y, Li W, Gong X, Niu X, Zheng J, et al. 2022. Widely quasi-quantitative analysis enables temporal bile acids-targeted metabolomics in rat after oral administration of ursodeoxycholic acid. Analytica Chimica Acta 1212:339885

doi: 10.1016/j.aca.2022.339885
[33]

Wang D, Yao J, Li L, Chen Y. 2025. Development of a non-targeted metabolomics-based screening method for elucidating the metabolic characteristics and potential applications of Lacticaseibacillus paracasei. Food Chemistry 466:141943

doi: 10.1016/j.foodchem.2024.
[34]

Xie J, Wang Q, Hu J, Wang L, Yu X, et al. 2025. Uncovering the effects of spreading under different light irradiation on the volatile and non-volatile metabolites of green tea by intelligent sensory technologies integrated with targeted and non-targeted metabolomics analyses. Food Chemistry 15:141482

doi: 10.1016/j.foodchem.2024.141482
[35]

Song SH, Kim S, Jang WJ, Ryu IS, Jeong CH, et al. 2024. Exploring the progression of drug dependence in a methamphetamine self-administration rat model through targeted and non-targeted metabolomics analyses. Scientific Reports 14:22543

doi: 10.1038/s41598-024-73247-5
[36]

Fountoulakis KN. 2024. Valproate use in psychiatry: New caution for an old friend? European Neuropsychopharmacol 88:1−2

doi: 10.1016/j.euroneuro.2024.07.006
[37]

Park H, Eo HJ, Kim CW, Stewart JE, Lee U, et al. 2024. Physiological disorders in cold-stored ‘Autumn Sense’ hardy kiwifruit depend on the storage temperature and the modulation of targeted metabolites. Food Chemistry 460:140730

doi: 10.1016/j.foodchem.2024.140730
[38]

Zhao H, Zhang S, Ma D, Liu Z, Qi P, et al. 2024. Review of fruits flavor deterioration in postharvest storage: Odorants, formation mechanism and quality control. Food Research International 182:114077

doi: 10.1016/j.foodres.2024.114077
[39]

Chen Z, Wang Z, Yuan H, He N. 2021. From tea leaves to factories: a review of research progress in l-theanine biosynthesis and production. Journal of Agriculture And Food Chemistry 69:1187−96

doi: 10.1021/acs.jafc.0c06694
[40]

Yin C, Gou L, Liu Y, Yin X, Zhang L, et al. 2011. Antidepressant-like effects of L-theanine in the forced swim and tail suspension tests in mice. Phytotherapy Research 25:1636−39

doi: 10.1002/ptr.3456
[41]

Bolneo E, Chau PYS, Noakes PG, Bellingham MC. 2022. Investigating the role of GABA in neural development and disease using mice lacking GAD67 or VGAT genes. International Journal of Molecular Sciences 23:7965

doi: 10.3390/ijms23147965
[42]

Vogt T. 2010. Phenylpropanoid biosynthesis. Molecular Plant 3:2−20

doi: 10.1093/mp/ssp106
[43]

Zhan C, Li Y, Li H, Wang M, Gong S, et al. 2022. Phylogenomic analysis of phenylalanine ammonia-lyase (PAL) multigene family and their differential expression analysis in wheat (Triticum aestivum L.) suggested their roles during different stress responses. Frontiers in Plant Science 13:982457

doi: 10.3389/fpls.2022.982457
[44]

Amjad M, Wang Y, Han S, Haider MZ, Sami A, et al. 2024. Genome wide identification of phenylalanine ammonia-lyase (PAL) gene family in Cucumis sativus (cucumber) against abiotic stress. BMC Genomic Data 25:76

doi: 10.1186/s12863-024-01259-1
[45]

Wada KC, Mizuuchi K, Koshio A, Kaneko K, Mitsui T. et al. 2014. Stress enhances the gene expression and enzyme activity of phenylalanine ammonia-lyase and the endogenous content of salicylic acid to induce flowering in Pharbitis. Journal of Plant Physiology 171:895−902

doi: 10.1016/j.jplph.2014.03.008
[46]

Phimchan P, Chanthai S, Bosland PW, Techawongstien S. 2014. Enzymatic changes in phenylalanine ammonia-lyase, cinnamic-4-hydroxylase, capsaicin synthase, and peroxidase activities in Capsicum under drought stress. Journal of Agricultural and Food Chemistry 62:7057−62

doi: 10.1021/jf4051717