[1]

Ou CG, Zhuang FY, Zhao ZW, Huang JX. 2009. Carrot diseases and development of breeding for diseases resistances. China Vegetables 4:1−6

[2]

Luby CH, Maeda HA, Goldman IL. 2014. Genetic and phenological variation of tocochromanol (vitamin E) content in wild (Daucus carota L. var. Carota) and domesticated carrot (D. Carota L. var. sativa). Horticulture Research 1:14015

doi: 10.1038/hortres.2014.15
[3]

Wang YH, Liu PZ, Liu H, Zhang RR, Liang Y, et al. 2023. Telomere-to-telomere carrot (Daucus carota) genome assembly reveals carotenoid characteristics. Horticulture Research 10:uhad103

doi: 10.1093/hr/uhad103
[4]

Heywood VH. 1983. Relationships and evolution in the Daucus carota complex. Israel Journal of Plant Sciences 32:51−65

[5]

Que F, Hou XL, Wang GL, Xu ZS, Tan GF, et al. 2019. Advances in research on the carrot, an important root vegetable in the Apiaceae family. Horticulture Research 6:69

doi: 10.1038/s41438-019-0150-6
[6]

Xiong AS. 2019. Germplasm Resources of Apiaceae Vegetables. Jiangsu: Jiangsu Feng Huang Science and Technology Press

[7]

Perrin F, Brahem M, Dubois-Laurent C, Huet S, Jourdan M, et al. 2016. Differential pigment accumulation in carrot leaves and roots during two growing periods. Journal of Agricultural and Food Chemistry 64:906−12

doi: 10.1021/acs.jafc.5b05308
[8]

Dodd AN, Salathia N, Hall A, Kévei E, Tóth R, et al. 2005. Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science 309:630−33

doi: 10.1126/science.1115581
[9]

Kugan HM, Rejab NA, Sahruzaini NA, Harikrishna JA, Baisakh N, et al. 2021. Circadian rhythms in legumes: what do we know and what else should we explore? International Journal of Molecular Sciences 22:4588

doi: 10.3390/ijms22094588
[10]

Franklin KA, Larner VS, Whitelam GC. 2005. The signal transducing photoreceptors of plants. The International Journal of Developmental Biology 49:653−64

doi: 10.1387/ijdb.051989kf
[11]

Millar AJ. 2003. Input signals to the plant circadian clock. Journal of Experimental Botany 55:277−83

doi: 10.1093/jxb/erh034
[12]

Olsen JE. 2010. Light and temperature sensing and signaling in induction of bud dormancy in woody plants. Plant Molecular Biology 73:37−47

doi: 10.1007/s11103-010-9620-9
[13]

Ruban AV. 2009. Plants in light. Communicative & Integrative Biology 2:50−55

doi: 10.4161/cib.2.1.7504
[14]

Tachibana R, Yamagami A, Miyagi S, Nakazawa M, Matsui M, et al. 2022. BRZ-INSENSITIVE-PALE GREEN 1 is encoded by chlorophyll biosynthesis enzyme gene that functions in the downstream of brassinosteroid signaling. Bioscience, Biotechnology, and Biochemistry 86(8):1041−48

doi: 10.1093/bbb/zbac071
[15]

Hu X, Khan I, Jiao Q, Zada A, Jia T. 2021. Chlorophyllase, a common plant hydrolase enzyme with a long history, is still a puzzle. Genes 12:1871

doi: 10.3390/genes12121871
[16]

Arias D, Ortega A, González-Calquin C, Quiroz LF, Moreno-Romero J, et al. 2022. Development and carotenoid synthesis in dark-grown carrot taproots require PHYTOCHROME RAPIDLY REGULATED1. Plant Physiology 189:1450−65

doi: 10.1093/plphys/kiac097
[17]

Zhang N, Hu ZH, Zhou JH, Liu H, Wang YH, et al. 2023. Photosynthetic characteristics of carrot circadian rhythm and photoperiod response of circadian clock genes DcRVEa and DcRVEb. Plant Physiology Journal 59:2018−26

doi: 10.13592/j.cnki.ppj.100769
[18]

Agarwal T, Wang X, Mildenhall F, Ibrahim IM, Puthiyaveetil S, et al. 2023. Chilling stress drives organ-specific transcriptional cascades and dampens diurnal oscillation in tomato. Horticulture Research 10:uhad137

doi: 10.1093/hr/uhad137
[19]

Freedman AH, Sackton TB. 2025. Rethinking eco-evo studies of gene expression for non-model organisms in the genomic era. Molecular Ecology 34:e17378

doi: 10.1111/mec.17378
[20]

Apweiler R, Bairoch A, Wu CH, Barker WC, Boeckmann B, et al. 2004. UniProt: the universal protein knowledgebase. Nucleic Acids Research 32:D115−D119

doi: 10.1093/nar/gkh131
[21]

Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, et al. 2000. Gene Ontology: tool for the unification of biology. Nature Genetics 25:25−29

doi: 10.1038/75556
[22]

Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, et al. 2003. The COG database: an updated version includes eukaryotes. BMC Bioinformatics 4:41

doi: 10.1186/1471-2105-4-41
[23]

Deng YY, Li JQ, Wu SF, Zhu YP, Chen YW, et al. 2006. Integrated nr database in protein annotation system and its localization. Computer Engineering 5:71−73,76

doi: 10.3969/j.issn.1000-3428.2006.05.026
[24]

Finn RD, Clements J, Eddy SR. 2011. HMMER web server: interactive sequence similarity searching. Nucleic Acids Research 39:W29−W37

doi: 10.1093/nar/gkr367
[25]

Kanehisa M, Goto S. 2000. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Research 28(1):27−30

doi: 10.1093/nar/28.1.27
[26]

Huang W, Zhang SB, Liu T. 2018. Moderate photoinhibition of photosystem II significantly affects linear electron flow in the shade-demanding plant Panax notoginseng. Frontiers in Plant Science 9:637

doi: 10.3389/fpls.2018.00637
[27]

Song SS, Hao Q, Su LH, Xia SW, Zhang RJ, et al. 2023. FLOWERING LOCUS T (FT) gene regulates short-day flowering in low latitude Xishuangbanna cucumber (Cucumis sativus var. xishuangbannanesis). Vegetable Research 3:15

doi: 10.48130/vr-2023-0015
[28]

Gupta A, Singh R, Vandana P, Singh K, Sharma D. 2024. Enhancing crop productivity with salt-tolerant PGPR: a step towards sustainable farming. Vegetable Research 4:e033

doi: 10.48130/vegres-0024-0032
[29]

Hu ZH, Huang T, Zhang N, Chen C, Yang KX, et al. 2024. Interference of skeleton photoperiod in circadian clock and photosynthetic efficiency of tea plant: in-depth analysis of mathematical model. Horticulture Research 11:uhae226

doi: 10.1093/hr/uhae226
[30]

Hu Z, Zhang N, Qin Z, Li J, Yang N, et al. 2024. Differential response of MYB transcription factor gene transcripts to circadian rhythm in tea plants (Camellia sinensis). International Journal of Molecular Sciences 25:657

doi: 10.3390/ijms25010657
[31]

Hu ZH, Sun MZ, Yang KX, Zhang N, Chen C, et al. 2024. High-throughput transcriptomic analysis of circadian rhythm of chlorophyll metabolism under different photoperiods in tea plants. International Journal of Molecular Sciences 25:9270

doi: 10.3390/ijms25179270
[32]

Dupuis S, Ojeda V, Gallaher SD, Purvine SO, Glaesener AG et al. 2025. Too dim, too bright, and just right: systems analysis of the Chlamydomonas diurnal program under limiting and excess light. The Plant Cell 37:koaf086

doi: 10.1093/plcell/koaf086
[33]

Yu C, Xu HF, Liu YR, Yan, WW, Kong XL, et al. 2024. The transcription factor RppA regulates chlorophyll and carotenoid biosynthesis to improve photoprotection in cyanobacteria. Plant Physiology 197:kiae502

doi: 10.1093/plphys/kiae502
[34]

Tanaka K, Kondo A, Hasunuma T. 2024. Minimized dark consumption of Calvin cycle intermediates facilitates the initiation of photosynthesis in Synechocystis sp. PCC 6803. Plant and Cell Physiology 65:1812−20

doi: 10.1093/pcp/pcae102
[35]

Arend M, Yuan Y, Ruiz-Sola MÁ, Omranian N, Nikoloski Z, et al. 2023. Widening the landscape of transcriptional regulation of green algal photoprotection. Nature Communications 14:2687

doi: 10.1038/s41467-023-38183-4
[36]

Gendron JM, Staiger D. 2023. New horizons in plant photoperiodism. Annual Review of Plant Biology 74:481−509

doi: 10.1146/annurev-arplant-070522-055628
[37]

Quiroz-Iturra LF, Simpson K, Arias D, Silva C, González-Calquin C, et al. 2022. Carrot DcALFIN4 and DcALFIN7 transcription factors boost carotenoid levels and participate differentially in salt stress tolerance when expressed in Arabidopsis thaliana and Actinidia deliciosa. International Journal of Molecular Sciences 23:12157

doi: 10.3390/ijms232012157
[38]

Koutouan CE, Le Clerc V, Suel A, Hamama L, Claudel P, et al. 2023. Co-localization of resistance and metabolic quantitative trait loci on carrot genome reveals fungitoxic terpenes and related candidate genes associated with the resistance to Alternaria dauci. Metabolites 13:71

doi: 10.3390/metabo13010071
[39]

Liang C, Zhao D, Ou C, Zhao Z, Zhuang F, et al. 2024. Transcriptome analysis reveals the molecular mechanisms of carrot adaptation to Alternaria leaf blight. International Journal of Molecular Sciences 25:13106

doi: 10.3390/ijms252313106
[40]

Yahyaa M, Berim, A, Nawade, B, Ibdah, M, Dudareva, N, et al. 2019. Biosynthesis of methyleugenol and methylisoeugenol in Daucus carota leaves: characterization of eugenol/isoeugenol synthase and O-Methyltransferase. Phytochemistry 159:179−89

doi: 10.1016/j.phytochem.2018.12.020
[41]

Huang XQ, Yahyaa M, Kongala PR, Maoz I, Dudareva N, et al. 2025. Biosynthesis of elemicin and isoelemicin in Daucus carota leaves. The Plant Journal 121:e17201

doi: 10.1111/tpj.17201
[42]

He X, Long F, Li Y, Xu Y, Hu L, et al. 2022. Comparative transcriptome analysis revealing the potential mechanism of low-temperature stress in Machilus microcarpa. Frontiers in Plant Science 13:900870

doi: 10.3389/fpls.2022.900870
[43]

Huang C, Yu QB, Li ZR, Ye LS, Xu L, et al. 2017. Porphobilinogen deaminase HEMC interacts with the PPR-protein AtECB2 for chloroplast RNA editing. The Plant Journal 92:546−56

doi: 10.1111/tpj.13672
[44]

Sun M, Shen Y. 2024. Integrating the multiple functions of CHLH into chloroplast-derived signaling fundamental to plant development and adaptation as well as fruit ripening. Plant Science 338:111892

doi: 10.1016/j.plantsci.2023.111892
[45]

Yu Y, Portolés S, Ren Y, Sun G, Wang XF, et al. 2022. The key clock component ZEITLUPE (ZTL) negatively regulates ABA signaling by degradation of CHLH in Arabidopsis. Frontiers in Plant Science 13:995907

doi: 10.3389/fpls.2022.995907
[46]

Ali Shah A, Ahmad Yasin N, Mudassir M, Ramzan M, Hussain I, et al. 2022. Iron oxide nanoparticles and selenium supplementation improve growth and photosynthesis by modulating antioxidant system and gene expression of chlorophyll synthase (CHLG) and protochlorophyllide oxidoreductase (POR) in arsenic-stressed Cucumis melo. Environmental Pollution 307:119413

doi: 10.1016/j.envpol.2022.119413
[47]

Zhang S, Heyes DJ, Feng L, Sun W, Johannissen LO, et al. 2019. Structural basis for enzymatic photocatalysis in chlorophyll biosynthesis. Nature 574:722−25

doi: 10.1038/s41586-019-1685-2
[48]

Li Q, Zhou S, Liu W, Zhai Z, Pan Y, et al. 2021. A chlorophyll a oxygenase 1 gene ZmCAO1 contributes to grain yield and waterlogging tolerance in maize. Journal of Experimental Botany 72(8):3155−67

doi: 10.1093/jxb/erab059
[49]

Zheng X, Lan J, Yu H, Zhang J, Zhang Y, et al. 2022. Arabidopsis transcription factor TCP4 represses chlorophyll biosynthesis to prevent petal greening. Plant Communications 3:100309

doi: 10.1016/j.xplc.2022.100309
[50]

Kim J, Lee JK, Kim EJ. 2023. Chlorophyll a synthesis in Rhodobacter Sphaeroides by chlorophyll synthase of Nicotiana Tabacum. Biology 12:573

doi: 10.3390/biology12040573
[51]

Liu B, Zhang X, You X, Li Y, Long S, et al. 2022. Hydrogen sulfide improves tall fescue photosynthesis response to low-light stress by regulating chlorophyll and carotenoid metabolisms. Plant Physiology and Biochemistry 170:133−45

doi: 10.1016/j.plaphy.2021.12.002
[52]

Sharma A, Kumar V, Shahzad B, Ramakrishnan M, Singh Sidhu GP, et al. 2020. Photosynthetic response of plants under different abiotic stresses: a review. Journal of Plant Growth Regulation 39:509−31

doi: 10.1007/s00344-019-10018-x
[53]

Zhang FP, Sussmilch F, Nichols DS, Cardoso AA, Brodribb TJ, et al. 2018. Leaves, not roots or floral tissue, are the main site of rapid, external pressure-induced ABA biosynthesis in angiosperms. Journal of Experimental. Botany 69:1261−67

doi: 10.1093/jxb/erx480
[54]

Li T, Deng YJ, Liu JX, Duan AQ, Liu H, et al. 2021. DcCCD4 catalyzes the degradation of α-carotene and β-carotene to affect carotenoid accumulation and taproot color in carrot. The Plant Journal 108:1116−30

doi: 10.1111/tpj.15498