[1]

Nuwarapaksha TD, Udumann SS, Dissanayaka NS, Dilshan RMN, Atapattu AJ. 2025. Revolutionizing agriculture by advanced water and irrigation management technologies. In Emerging Trends and Technologies in Water Management and Conservation, eds Mohamed Moussaoui M, Rachid A. US: IGI Global Scientific Publishing. pp. 285−18 doi: 10.4018/979-8-3693-6920-3.ch009

[2]

Nachshon U. 2020. Soil degradation processes: it's time to take our head out of the sand. Geosciences 11(1):2

doi: 10.3390/geosciences11010002
[3]

U. N. 2015. Transforming our world: the 2030 agenda for sustainable development. In A New Era in Global Health. New York, NY: Springer. pp. 529−67 doi: 10.1891/9780826190123.ap02

[4]

Shinwari ZK, Tanveer F, Iqrar I. 2019. Role of microbes in plant health, disease management, and abiotic stress management. In Microbiome in Plant Health and Disease, eds Kumar V, Prasad R, Kumar M, Choudhary D. Singapore: Springer. pp. 231−50 doi: 10.1007/978-981-13-8495-0_11

[5]

Tripathi S, Srivastava P, Devi RS, Bhadouria R. 2020. Influence of synthetic fertilizers and pesticides on soil health and soil microbiology. In Agrochemicals Detection, Treatment and Remediation, ed. Prasad MNV. UK: Butterworth-Heinemann. pp. 25−54 doi: 10.1016/B978-0-08-103017-2.00002-7

[6]

Walia SS, Babu S, Gill RS, Kaur T, Kohima N, et al. 2022. Designing resource-efficient and environmentally safe cropping systems for sustainable energy use and economic returns in Indo-Gangetic Plains, India. Sustainability 14(21):14636

doi: 10.3390/su142114636
[7]

Shah KK, Tripathi S, Tiwari I, Shrestha J, Modi B, et al. 2021. Role of soil microbes in sustainable crop production and soil health: a review. Agricultural Science and Technology 13(2):109−18

doi: 10.15547/ast.2021.02.019
[8]

Seneviratne G, Zavahir JS. 2021. Role of microbial communities for sustainability. Singapore: Springer Singapore. Volume 29. pp. 1−379 doi: 10.1007/978-981-15-9912-5

[9]

Shamseldin A, Abdelkhalek A, Sadowsky MJ. 2017. Recent changes to the classification of symbiotic, nitrogen-fixing, legume-associating bacteria: a review. Symbiosis 71(2):91−09

doi: 10.1007/s13199-016-0462-3
[10]

Spaepen S. 2014. Plant hormones produced by microbes. In Principles of Plant-Microbe Interactions, ed. Lugtenberg B. Cham: Springer. pp. 247–56 doi: 10.1007/978-3-319-08575-3_26

[11]

Naik K, Mishra S, Srichandan H, Singh PK, Sarangi PK. 2019. Plant growth promoting microbes: potential link to sustainable agriculture and environment. Biocatalysis and Agricultural Biotechnology 21:101326

doi: 10.1016/j.bcab.2019.101326
[12]

Iqbal B, Li G, Alabbosh KF, Hussain H, Khan I, et al. 2023. Advancing environmental sustainability through microbial reprogramming in growth improvement, stress alleviation, and phytoremediation. Plant Stress 10:100283

doi: 10.1016/j.stress.2023.100283
[13]

Dini-Andreote F, van Elsas JD. 2019. The soil microbiome—an overview. In Modern Soil Microbiology, eds van Elsas JD Trevors JT, Soares Rosado A, Nannipieri P. 3rd Edition. Boca Raton: CRC Press. pp. 37−48 doi: 10.1201/9780429059186-3

[14]

Chandra D, Srivastava R, Sharma AK. 2015. Environment-friendly phosphorus biofertilizer as an alternative to chemical fertilizers. In Recent Trends in Biofertilizers, eds. Pati BR, Mandai SM. New Delhi: IK International Publishing House. pp. 43−71

[15]

Blagodatskaya E, Kuzyakov Y. 2013. Active microorganisms in soil: critical review of estimation criteria and approaches. Soil Biology and Biochemistry 67:192−211

doi: 10.1016/j.soilbio.2013.08.024
[16]

Mendes LW, Tsai SM, Navarrete AA, de Hollander M, van Veen JA, et al. 2015. Soil-borne microbiome: Linking diversity to function. Microbial Ecology 70(1):255−65

doi: 10.1007/s00248-014-0559-2
[17]

Giri B, Giang PH, Kumari R, Prasad R, Varma A. 2005. Microbial diversity in soils. In Microorganisms in Soils: Roles in Genesis and Functions, eds Varma A, Buscot F, Berlin. Heidelberg: Springer. pp. 19–55 doi: 10.1007/3-540-26609-7_2

[18]

Bickel S, Or D. 2020. Soil bacterial diversity mediated by microscale aqueous-phase processes across biomes. Nature Communications 11(2):116

doi: 10.1038/s41467-019-13966-w
[19]

Symochko L. 2020. Soil microbiome: diversity, activity, functional and structural successions. International Journal of Ecosystems and Ecology Science (IJEES) 10(2):277−84

doi: 10.31407/ijees
[20]

Borozan AB, Bordean DM, Poiana MA, Alexa E, Caba IL, et al. 2021. Soil pollution with heavy metals and bioremediation methods. AgroLife Scientific Journal 10(1):AGL202115

doi: 10.17930/AGL202115
[21]

Tshikhudo PP, Ntushelo K, Mudau FN. 2023. Sustainable applications of endophytic bacteria and their physiological/biochemical roles on medicinal and herbal plants: review. Microorganisms 11(2):453

doi: 10.3390/microorganisms11020453
[22]

Wu X, Yang J, Ruan H, Wang S, Yang Y, et al. 2021. The diversity and co-occurrence network of soil bacterial and fungal communities and their implications for a new indicator of grassland degradation. Ecological Indicators 129:107989

doi: 10.1016/j.ecolind.2021.107989
[23]

Aparici-Carratalá D, Esclapez J, Bautista V, Bonete MJ, Camacho M. 2023. Archaea: current and potential biotechnological applications. Research in Microbiology 174:104080

doi: 10.1016/j.resmic.2023.104080
[24]

Whitman WB. 2009. The modern concept of the procaryote. Journal of Bacteriology 191:2000−5

doi: 10.1128/JB.00962-08
[25]

Milgroom MG. 2023. Protozoa. In Biology of Infectious Disease: from Molecules to Ecosystems, ed. Milgroom MG. Cham: Springer. pp. 71–87 doi: 10.1007/978-3-031-38941-2_6

[26]

Islam W, Noman A, Naveed H, Huang Z, Chen HYH. 2020. Role of environmental factors in shaping the soil microbiome. Environmental Science and Pollution Research 27:41225−47

doi: 10.1007/s11356-020-10471-2
[27]

Blackwell M. 2011. The fungi: 1, 2, 3 … 5.1 million species? American Journal of Botany 98(3):426−38

doi: 10.3732/ajb.1000298
[28]

Offre P, Spang A, Schleper C. 2013. Archaea in biogeochemical cycles. Annual Review of Microbiology 67(1):437−57

doi: 10.1146/annurev-micro-092412-155614
[29]

Jung J, Kim JS, Taffner J, Berg G, Ryu CM. 2020. Archaea, tiny helpers of land plants. Computational and Structural Biotechnology Journal 18:2494−500

doi: 10.1016/j.csbj.2020.09.005
[30]

Alori ET, Emmanuel OC, Glick BR, Babalola OO. 2020. Plant–Archaea relationships: a potential means to improve crop production in arid and semi-arid regions. World Journal of Microbiology and Biotechnology 36(9):133

doi: 10.1007/s11274-020-02910-6
[31]

Geisen S, Mitchell EAD, Adl S, Bonkowski M, Dunthorn M, et al. 2018. Soil protists: a fertile frontier in soil biology research. FEMS Microbiology Reviews 42(3):293−323

doi: 10.1093/femsre/fuy006
[32]

Hoorman JJ. 2011. The role of soil protozoa and nematodes. Fact sheet: agriculture and natural resources. The Ohio State University Extension, Colombus, OH. pp. 1−5

[33]

Reiss J. 2021. The role of protozoans and microscopically small metazoans in aquatic plant litter decomposition. In The Ecology of Plant Litter Decomposition in Stream Ecosystems, eds Swan CM, Boyero L, Canhoto C. Cham: Springer. pp. 217–33 doi: 10.1007/978-3-030-72854-0_11

[34]

Kang E, Li Y, Zhang X, Yan Z, Wu H, et al. 2021. Soil pH and nutrients shape the vertical distribution of microbial communities in an alpine wetland. Science of The Total Environment 774:145780

doi: 10.1016/j.scitotenv.2021.145780
[35]

Borowik A, Wyszkowska J. 2016. Soil moisture as a factor affecting the microbiological and biochemical activity of soil. Plant, Soil, and Environment 62(6):250−55

doi: 10.17221/158/2016-PSE
[36]

Eckert EM, Di Cesare A, Kettner MT, Arias-Andres M, Fontaneto D, et al. 2018. Microplastics increase impact of treated wastewater on freshwater microbial community. Environmental Pollution 234:495−502

doi: 10.1016/j.envpol.2017.11.070
[37]

Swamy MK, Akhtar MohdS, Sinniah UR. 2016. Root exudates and their molecular interactions with rhizospheric microbes. In Plant, Soil and Microbes, eds Hakeem K, Akhtar M. Cham: Springer. pp. 59–77 doi: 10.1007/978-3-319-29573-2_4

[38]

Akinnawo SO. 2023. Eutrophication: Causes, consequences, physical, chemical, and biological techniques for mitigation strategies. Environmental Challenges 12:100733

doi: 10.1016/j.envc.2023.100733
[39]

Shah AN, Tanveer M, Shahzad B, Yang G, Fahad S, et al. 2017. Soil compaction effects on soil health and crop productivity: an overview. Environmental Science and Pollution Research 24:10056−67

doi: 10.1007/s11356-017-8421-y
[40]

Banach JL, Van Der Fels-Klerx HJ. 2020. Microbiological reduction strategies of irrigation water for fresh produce. Journal of Food Protection 83(6):1072−87

doi: 10.4315/JFP-19-466
[41]

Chen H, Jia Y, Xu H, Wang Y, Zhou Y, et al. 2020. Ammonium nutrition inhibits plant growth and nitrogen uptake in citrus seedlings. Scientia Horticulturae 272:109526

doi: 10.1016/j.scienta.2020.109526
[42]

Pal A, Adhikary R, Barman S, Maitra S. 2020. Nitrogen transformation and losses in soil: a cost-effective review study for farmer. International Journal of Chemical Studies 8(3):2623−26

doi: 10.22271/chemi.2020.v8.i3al.9609
[43]

Javed A, Ali E, Binte Afzal K, Osman A, Riaz S. 2022. Soil fertility: factors affecting soil fertility, and biodiversity responsible for soil fertility. International Journal of Plant, Animal and Environmental Sciences 12(1):21−33

doi: 10.26502/ijpaes.202129
[44]

Sabry KH. 2015. Synthetic fertilizers: role and hazards. Fertilizer Technology 1:110−33

[45]

Flora Y, Rabha P, Shinde A, Jha P, Jobby R. 2021. Non-symbiotic bacteria for soil nitrogen fortification. In Sustainable Agriculture Reviews 52, ed. Lichtfouse E. Cham: Springer. Vol 52. pp. 417–35 doi: 10.1007/978-3-030-73245-5_13

[46]

Fisher K, Newton WE. 2002. Nitrogen fixation – a general overview. In Nitrogen Fixation at the Millennium, ed. Leigh GJ. Amsterdam: Elsevier. pp. 1–34 doi: 10.1016/B978-044450965-9/50001-X

[47]

Mus F, Crook MB, Garcia K, Garcia Costas A, Geddes BA, et al. 2016. Symbiotic nitrogen fixation and the challenges to its extension to nonlegumes. Applied and Environmental Microbiology 82(13):3698−710

doi: 10.1128/AEM.01055-16
[48]

Einsle O, Rees DC. 2020. Structural enzymology of nitrogenase enzymes. Chemical Reviews 120(12):4969−5004

doi: 10.1021/acs.chemrev.0c00067
[49]

Schwember AR, Schulze J, del Pozo A, Cabeza RA. 2019. Regulation of symbiotic nitrogen fixation in legume root nodules. Plants 8(9):333

doi: 10.3390/plants8090333
[50]

Jaiswal SK, Dakora FD. 2025. Maximizing photosynthesis and plant growth in African legumes through rhizobial partnerships: the road behind and ahead. Microorganisms 13(3):581

doi: 10.3390/microorganisms13030581
[51]

Lindström K, Mousavi SA. 2020. Effectiveness of nitrogen fixation in rhizobia. Microbial Biotechnology 13(5):1314−35

doi: 10.1111/1751-7915.13517
[52]

Roper MM, Gupta VVSR. 2016. Enhancing non-symbiotic N2 fixation in agriculture. The Open Agriculture Journal 10(1):7−27

doi: 10.2174/1874331501610010007
[53]

Soumare A, Diedhiou AG, Thuita M, Hafidi M, Ouhdouch Y, et al. 2020. Exploiting biological nitrogen fixation: a route towards a sustainable agriculture. Plants 9(8):1011

doi: 10.3390/plants9081011
[54]

Smercina DN, Evans SE, Friesen ML, Tiemann LK. 2019. To fix or not to fix: controls on free-living nitrogen fixation in the rhizosphere. Applied and Environmental Microbiology 85(6):e02546-18

doi: 10.1128/AEM.02546-18
[55]

Ward BB. 2008. Nitrification in marine systems. In Nitrogen in the Marine Environment, eds Capone DG, Bronk DA, Mulholland MR, Carpenter EJ. 2nd Edition. US: Academic Press. pp. 199−261 doi: 10.1016/B978-0-12-372522-6.00005-0

[56]

Subbarao GV, Sahrawat KL, Nakahara K, Ishikawa T, Kishii M, et al. 2012. Biological nitrification inhibition—a novel strategy to regulate nitrification in agricultural systems. Advances in Agronomy 114:249−302

doi: 10.1016/B978-0-12-394275-3.00001-8
[57]

Subbarao GV, Nakahara K, Ishikawa T, Ono H, Yoshida M, et al. 2013. Biological nitrification inhibition (BNI) activity in sorghum and its characterization. Plant and Soil 366(1−2):243−59

doi: 10.1007/s11104-012-1419-9
[58]

Wendeborn S. 2020. The chemistry, biology, and modulation of ammonium nitrification in soil. Angewandte Chemie International Edition 59(6):2182−202

doi: 10.1002/anie.201903014
[59]

Gaye B, Nagel B, Dähnke K, Rixen T, Emeis KC. 2013. Evidence of parallel denitrification and nitrite oxidation in the ODZ of the Arabian Sea from paired stable isotopes of nitrate and nitrite. Global Biogeochemical Cycles 27(4):1059−71

doi: 10.1002/2011GB004115
[60]

Stieglmeier M, Wirth R, Kminek G, Moissl-Eichinger C. 2009. Cultivation of anaerobic and facultatively anaerobic bacteria from spacecraft-associated clean rooms. Applied and Environmental Microbiology 75(11):3484−91

doi: 10.1128/AEM.02565-08
[61]

Klanjšček J, Geček S, Legović T. 2012. Influence of fish feed composition on oxygen utilization during decomposition of aquaculture effluents. Aquaculture Research 43(12):1845−60

doi: 10.1111/j.1365-2109.2011.02994.x
[62]

Rana A, Pandey RK, Ramakrishnan B. 2019. Enzymology of the nitrogen cycle and bioremediation of toxic nitrogenous compounds. In Smart Bioremediation Technologies, ed. Bhatt P. US: Academic Press. pp. 45−61 doi: 10.1016/B978-0-12-818307-6.00003-2

[63]

Meng X, Chen WW, Wang YY, Huang ZR, Ye X, et al. 2021. Effects of phosphorus deficiency on the absorption of mineral nutrients, photosynthetic system performance and antioxidant metabolism in Citrus grandis. PLoS One 16(2):e0246944

doi: 10.1371/journal.pone.0246944
[64]

Goswami SP, Maurya BR, Dubey AN, Singh NK. 2019. Role of phosphorus solubilizing microorganisms and dissolution of insoluble phosphorus in soil. International Journal of Chemical Studies 7(3):3905−13

[65]

Chen YP, Rekha PD, Arun AB, Shen FT, Lai WA, et al. 2006. Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Applied Soil Ecology 34(1):33−41

doi: 10.1016/j.apsoil.2005.12.002
[66]

Ameen F, AlYahya SA, AlNadhari S, Alasmari H, Alhoshani F, et al. 2019. Phosphate solubilizing bacteria and fungi in desert soils: species, limitations and mechanisms. Archives of Agronomy and Soil Science 65(10):1446−59

doi: 10.1080/03650340.2019.1566713
[67]

Wang C, Jiang HL. 2016. Chemicals used for in situ immobilization to reduce the internal phosphorus loading from lake sediments for eutrophication control. Critical Reviews in Environmental Science and Technology 46(10):947−97

doi: 10.1080/10643389.2016.1200330
[68]

Kirui CK, Njeru EM, Runo S. 2022. Diversity and phosphate solubilization efficiency of phosphate solubilizing bacteria isolated from semi-arid agroecosystems of eastern Kenya. Microbiology Insights 15:11786361221088991

doi: 10.1177/11786361221088991
[69]

Rawat P, Das S, Shankhdhar D, Shankhdhar SC. 2021. Phosphate-solubilizing microorganisms: mechanism and their role in phosphate solubilization and uptake. Journal of Soil Science and Plant Nutrition 21(1):49−68

doi: 10.1007/s42729-020-00342-7
[70]

Wahid F, Sharif M, Fahad S, Ali A, Adnan M, et al. 2022. Mycorrhiza and phosphate solubilizing bacteria: potential bioagents for sustainable phosphorus management in agriculture. Phyton 91(2):257−78

doi: 10.32604/phyton.2022.016512
[71]

Bago B, Pfeffer PE, Shachar-Hill Y. 2000. Carbon metabolism and transport in arbuscular mycorrhizas. Plant Physiology 124:949−58

doi: 10.1104/pp.124.3.949
[72]

Etesami H, Jeong BR, Glick BR. 2021. Contribution of arbuscular mycorrhizal fungi, phosphate-solubilizing bacteria, and silicon to P uptake by plant. Frontiers in Plant Science 12:699618

doi: 10.3389/fpls.2021.699618
[73]

Redecker D, Schüßler A, Stockinger H, Stürmer SL, Morton JB, et al. 2013. An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). Mycorrhiza 23(7):515−31

doi: 10.1007/s00572-013-0486-y
[74]

Spatafora JW, Chang Y, Benny GL, Lazarus K, Smith ME, et al. 2016. A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia 108(5):1028−46

doi: 10.3852/16-042
[75]

Marian M, Shimizu M. 2019. Improving performance of microbial biocontrol agents against plant diseases. Journal of General Plant Pathology 85(5):329−36

doi: 10.1007/s10327-019-00866-6
[76]

Shafi J, Tian H, Ji M. 2017. Bacillus species as versatile weapons for plant pathogens: a review. Biotechnology & Biotechnological Equipment 31(3):446−59

doi: 10.1080/13102818.2017.1286950
[77]

Miljaković D, Marinković J, Balešević-Tubić S. 2020. The significance of Bacillus spp. in disease suppression and growth promotion of field and vegetable crops. Microorganisms 8(7):1037

doi: 10.3390/microorganisms8071037
[78]

Suhana S, Nutan Y, Anoop RM. 2020. Interactive potential of Pseudomonas species with plants. Journal of Applied Biology and Biotechnology 8(6):101−11

doi: 10.7324/JABB.2020.80616
[79]

Sasirekha B, Srividya S. 2016. Siderophore production by Pseudomonas aeruginosa FP6, a biocontrol strain for Rhizoctonia solani and Colletotrichum gloeosporioides causing diseases in chilli. Agriculture and Natural Resources 50(4):250−56

doi: 10.1016/j.anres.2016.02.003
[80]

Fourati-Ben Fguira L, Fotso S, Ben Ameur-Mehdi R, Mellouli L, Laatsch H. 2005. Purification and structure elucidation of antifungal and antibacterial activities of newly isolated Streptomyces sp. strain US80. Research in Microbiology 156(3):341−47

doi: 10.1016/j.resmic.2004.10.006
[81]

Jaroszewicz W, Bielańska P, Lubomska D, Kosznik-Kwaśnicka K, Golec P, et al. 2021. Antibacterial, antifungal and anticancer activities of compounds produced by newly isolated streptomyces strains from the szczelina chochołowska cave (Tatra Mountains, Poland). Antibiotics 10(10):1212

doi: 10.3390/antibiotics10101212
[82]

Ruangwong OU, Kunasakdakul K, Chankaew S, Pitija K, Sunpapao A. 2022. A Rhizobacterium, Streptomyces albulus Z1-04-02, displays antifungal activity against Sclerotium Rot in mungbean. Plants 11(19):2607

doi: 10.3390/plants11192607
[83]

Rashad YM, Moussa TAA. 2020. Biocontrol agents for fungal plant diseases management. In Cottage Industry of Biocontrol Agents and Their Applications, eds El-Wakeli N, Saleh M, Abu-hashim M. Cham: Springer. pp. 337–63 doi: 10.1007/978-3-030-33161-0_11

[84]

Mukherjee PK, Mendoza-Mendoza A, Zeilinger S, Horwitz BA. 2022. Mycoparasitism as a mechanism of Trichoderma-mediated suppression of plant diseases. Fungal Biology Reviews 39:15−33

doi: 10.1016/j.fbr.2021.11.004
[85]

Kiss L, Pintye A, Zséli G, Jankovics T, Szentiványi O, et al. 2010. Microcyclic conidiogenesis in powdery mildews and its association with intracellular parasitism by Ampelomyces. European Journal of Plant Pathology 126(4):445−51

doi: 10.1007/s10658-009-9558-4
[86]

Bozoudi D, Tsaltas D. 2018. The multiple and versatile roles of Aureobasidium pullulans in the vitivinicultural sector. Fermentation 4(4):85

doi: 10.3390/fermentation4040085
[87]

Valicente FH. 2019. Entomopathogenic viruses. In Natural Enemies of Insect Pests in Neotropical Agroecosystems, eds Souza B, Vazquez L, Marucci R. Cham: Springer. pp. 137–50 doi: 10.1007/978-3-030-24733-1_12

[88]

Poveda J, González-Andrés F. 2021. Bacillus as a source of phytohormones for use in agriculture. Applied Microbiology and Biotechnology 105:8629−45

doi: 10.1007/s00253-021-11492-8
[89]

Iqbal N, Khan NA, Ferrante A, Trivellini A, Francini A, et al. 2017. Ethylene role in plant growth, development and senescence: Interaction with other phytohormones. Frontiers in Plant Science 8:235913

doi: 10.3389/fpls.2017.00475
[90]

Moon YS, Ali S. 2022. Possible mechanisms for the equilibrium of ACC and role of ACC deaminase-producing bacteria. Applied Microbiology and Biotechnology 106(3):877−87

doi: 10.1007/s00253-022-11772-x
[91]

Inbaraj MP. 2021. Plant-microbe interactions in alleviating abiotic stress—a mini review. Frontiers in Agronomy 3:667903

doi: 10.3389/fagro.2021.667903
[92]

Donoso R, Leiva-Novoa P, Zúñiga A, Timmermann T, Recabarren-Gajardo G, et al. 2017. Biochemical and genetic bases of indole-3-acetic acid (auxin phytohormone) degradation by the plant-growth-promoting Rhizobacterium Paraburkholderia phytofirmans PsJN. Applied and Environmental Microbiology 83(1):e01991-16

doi: 10.1128/AEM.01991-16
[93]

Chaudhry S, Sidhu GPS. 2022. Climate change regulated abiotic stress mechanisms in plants: a comprehensive review. Plant Cell Reports 41(1):1−31

doi: 10.1007/s00299-021-02759-5
[94]

Sharma A, Shahzad B, Kumar V, Kohli SK, Sidhu GPS, et al. 2019. Phytohormones regulate accumulation of osmolytes under abiotic stress. Biomolecules 9(7):285

doi: 10.3390/biom9070285
[95]

Ngumbi E, Kloepper J. 2016. Bacterial-mediated drought tolerance: Current and future prospects. Applied Soil Ecology 105:109−25

doi: 10.1016/j.apsoil.2016.04.009
[96]

Bruno LB, Karthik C, Ma Y, Kadirvelu K, Freitas H, et al. 2020. Amelioration of chromium and heat stresses in Sorghum bicolor by Cr6+ reducing-thermotolerant plant growth promoting bacteria. Chemosphere 244:125521

doi: 10.1016/j.chemosphere.2019.125521
[97]

Mukhtar T, ur Rehman S, Smith D, Sultan T, Seleiman MF, et al. 2020. Mitigation of heat stress in Solanum lycopersicum L. by ACC-deaminase and exopolysaccharide producing Bacillus cereus: effects on biochemical profiling. Sustainability 12(6):2159

doi: 10.3390/su12062159
[98]

Liu Y, Xun W, Chen L, Xu Z, Zhang N, et al. 2022. Rhizosphere microbes enhance plant salt tolerance: toward crop production in saline soil. Computational and Structural Biotechnology Journal 20:6543−51

doi: 10.1016/j.csbj.2022.11.046
[99]

Egamberdieva D, Wirth S, Bellingrath-Kimura SD, Mishra J, Arora NK. 2019. Salt-tolerant plant growth promoting rhizobacteria for enhancing crop productivity of saline soils. Frontiers in Microbiology 10:2791

doi: 10.3389/fmicb.2019.02791
[100]

Kumar A, Verma JP. 2018. Does plant—microbe interaction confer stress tolerance in plants: a review? Microbiological Research 207:41−52

doi: 10.1016/j.micres.2017.11.004
[101]

Rudrappa T, Biedrzycki ML, Bais HP. 2008. Causes and consequences of plant-associated biofilms. FEMS Microbiology Ecology 64(2):153−66

doi: 10.1111/j.1574-6941.2008.00465.x
[102]

Costa OYA, Raaijmakers JM, Kuramae EE. 2018. Microbial extracellular polymeric substances: ecological function and impact on soil aggregation. Frontiers in Microbiology 9:1636

doi: 10.3389/fmicb.2018.01636
[103]

Shahid MJ, Arslan M, Ali S, Siddique M, Afzal M. 2018. Floating wetlands: a sustainable tool for wastewater treatment. CLEAN – Soil, Air, Water 46(10):1800120

doi: 10.1002/clen.201800120
[104]

Alengebawy A, Abdelkhalek ST, Qureshi SR, Wang MQ. 2021. Heavy metals and pesticides toxicity in agricultural soil and plants: ecological risks and human health implications. Toxics 9:42

doi: 10.3390/toxics9030042
[105]

Medfu Tarekegn M, Zewdu Salilih F, Ishetu AI. 2020. Microbes used as a tool for bioremediation of heavy metal from the environment. Cogent Food and Agriculture 6(1):1783174

doi: 10.1080/23311932.2020.1783174
[106]

Saravanan A, Kumar PS, Vo DV, Jeevanantham S, Karishma S, et al. 2021. A review on catalytic-enzyme degradation of toxic environmental pollutants: microbial enzymes. Journal of Hazardous Materials 419:126451

doi: 10.1016/j.jhazmat.2021.126451
[107]

Priya AK, Gnanasekaran L, Dutta K, Rajendran S, Balakrishnan D, et al. 2022. Biosorption of heavy metals by microorganisms: evaluation of different underlying mechanisms. Chemosphere 307:135957

doi: 10.1016/j.chemosphere.2022.135957
[108]

Ayangbenro A, Babalola O. 2017. A new strategy for heavy metal polluted environments: a review of microbial biosorbents. International Journal of Environmental Research and Public Health 14(1):94

doi: 10.3390/ijerph14010094
[109]

Tyagi M, da Fonseca MMR, de Carvalho CCCR. 2011. Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation 22(2):231−41

doi: 10.1007/s10532-010-9394-4
[110]

Dissanayaka DMNS, Udumann SS, Nuwarapaksha TD, Atapattu AJ. 2024. Harnessing the potential of Mucuna cover cropping: a comprehensive review of its agronomic and environmental benefits. Circular Agricultural Systems 4:e003

doi: 10.48130/cas-0024-0001
[111]

Dissanayaka DMNS, Nuwarapaksha TD, Udumann SS, Dissanayake DKRPL, Atapattu AJ. 2022. A sustainable way of increasing productivity of coconut cultivation using cover crops: a review. Circular Agricultural Systems 2:7

doi: 10.48130/CAS-2022-0007
[112]

Nuwarapaksha TD, Dissanayaka NS, Udumann SS, Atapattu AJ. 2023. Gliricidia as a beneficial crop in resource-limiting agroforestry systems in Sri Lanka. Indian Journal of Agroforestry 25(1):12−18

[113]

Dissanayaka DMNS, Udumann SS, Atapattu AJ. 2024. Synergies between tree crops and ecosystems in tropical agroforestry. In Agroforestry, eds Raj A, Jhariya MK, Banerjee A, Jha RK, Singh KP. US: Scrivener Publishing. pp. 49–87 doi: 10.1002/9781394231164.ch3

[114]

Dissanayaka NS, Udumann SS, Nuwarapaksha TD, Atapattu AJ. 2023. Agroforestry: an avenue for resilient and productive farming through integrated crops and livestock production. In Transitioning to Zero Hunger, ed. Kiba DI. Basel, Switzerland: MDPI. pp. 115–36 doi: 10.3390/books978-3-03897-863-3-5

[115]

Dissanayaka DMNS, Dissanayake DKRPL, Udumann SS, Nuwarapaksha TD, Atapattu AJ. 2023. Agroforestry - a key tool in the climate-smart agriculture context: a review on coconut cultivation in Sri Lanka. Frontiers in Agronomy 5:1162750

doi: 10.3389/fagro.2023.1162750
[116]

Li X, Li B, Chen L, Liang J, Huang R, et al. 2022. Partial substitution of chemical fertilizer with organic fertilizer over seven years increases yields and restores soil bacterial community diversity in wheat–rice rotation. European Journal of Agronomy 133:126445

doi: 10.1016/j.eja.2021.126445
[117]

Barakat M, Cheviron B, Angulo-Jaramillo R. 2016. Influence of the irrigation technique and strategies on the nitrogen cycle and budget: a review. Agricultural Water Management 178:225−38

doi: 10.1016/j.agwat.2016.09.027
[118]

Dissanayaka NS, Rajaratnam K, Udumann SS, Nuwarapaksha TD, Shamila SK, et al. 2025. Evaluation of the nutritional composition of king coconut husk waste biochar and ash soil conditioners: a comprehensive analysis. Technology in Agronomy 5:e003

doi: 10.48130/tia-0024-0034
[119]

Ekanayaka EMGN, Dissanayake DKRPL, Udumann SS, Dissanayaka DMNS, Nuwarapaksha TD, et al. 2023. Sustainable utilization of king coconut husk as a feedstock in biochar production with the highest conversion efficiency and desirable properties. IOP Conference Series: Earth and Environmental Science 1235(1):012009

doi: 10.1088/1755-1315/1235/1/012009
[120]

Dissanayake DKRPL, Dissanayaka DMNS, Udumann SS, Nuwarapaksha TD, Atapattu AJ. 2023. Is biochar a promising soil amendment to enhance perennial crop yield and soil quality in the tropics? Technology in Agronomy 3:4

doi: 10.48130/TIA-2023-0004
[121]

Wang Y, Li C, Tu C, Hoyt GD, DeForest JL, et al. 2017. Long-term no-tillage and organic input management enhanced the diversity and stability of the soil microbial community. Science of The Total Environment 609:341−47

doi: 10.1016/j.scitotenv.2017.07.053
[122]

Kalayu G. 2019. Phosphate solubilizing microorganisms: promising approach as biofertilizers. International Journal of Agronomy 2019(1):4917256

doi: 10.1155/2019/4917256
[123]

Liu X, Cao A, Yan D, Ouyang C, Wang Q, Li Y. 2021. Overview of mechanisms and uses of biopesticides. International Journal of Pest Management 67(1):65−72

doi: 10.1080/09670874.2019.1664789
[124]

Hassa J, Maus I, Off S, Pühler A, Scherer P, et al. 2018. Metagenome, metatranscriptome, and metaproteome approaches unraveled compositions and functional relationships of microbial communities residing in biogas plants. Applied Microbiology and Biotechnology 102:5045−63

doi: 10.1007/s00253-018-8976-7
[125]

Fadiji AE, Babalola OO. 2020. Metagenomics methods for the study of plant-associated microbial communities: a review. Journal of Microbiological Methods 170:105860

doi: 10.1016/j.mimet.2020.105860
[126]

Jain A, Chakraborty J, Das S. 2020. Underlying mechanism of plant–microbe crosstalk in shaping microbial ecology of the rhizosphere. Acta Physiologiae Plantarum 42:8

doi: 10.1007/s11738-019-3000-0
[127]

Corbin KR, Bolt B, Rodríguez López CM. 2020. Breeding for beneficial microbial communities using epigenomics. Frontiers in Microbiology 11:937

doi: 10.3389/fmicb.2020.00937
[128]

Cho S, Shin J, Cho BK. 2018. Applications of CRISPR/Cas system to bacterial metabolic engineering. International Journal of Molecular Sciences 19(4):1089

doi: 10.3390/ijms19041089
[129]

Fedorec AJH, Karkaria BD, Sulu M, Barnes CP. 2021. Single strain control of microbial consortia. Nature Communications 12(1):1977

doi: 10.1038/s41467-021-22240-x
[130]

Yang T, Siddique KHM, Liu K. 2020. Cropping systems in agriculture and their impact on soil health-a review. Global Ecology and Conservation 23:e01118

doi: 10.1016/j.gecco.2020.e01118
[131]

Qiu Z, Egidi E, Liu H, Kaur S, Singh BK. 2019. New frontiers in agriculture productivity: optimised microbial inoculants and in situ microbiome engineering. Biotechnology Advances 37(6):107371

doi: 10.1016/j.biotechadv.2019.03.010
[132]

Reid G, Younes JA, Van der Mei HC, Gloor GB, Knight R, et al. 2011. Microbiota restoration: natural and supplemented recovery of human microbial communities. Nature Reviews Microbiology 9(1):27−38

doi: 10.1038/nrmicro2473
[133]

Baloch N. 2025. Microbial contributions to maize crop production: a comprehensive review of challenges and future perspectives. Discover Agriculture 3(1):10

doi: 10.1007/s44279-025-00164-0
[134]

Anas M, Khalid A, Saleem MH, Ali Khan K, Ahmed Khattak W, et al. 2025. Symbiotic synergy: unveiling plant-microbe interactions in stress adaptation. Journal of Crop Health 77(1):18

doi: 10.1007/s10343-024-01070-z