[1]

US Food and Drug Administration. 2024. FDA finalizes updated "healthy" nutrient content claim. www.fda.gov/food/hfp-constituent-updates/fda-finalizes-updated-healthy-nutrient-content-claim

[2]

Liao Y, Zhou X, Zeng L. 2022. How does tea (Camellia sinensis) produce specialized metabolites which determine its unique quality and function: a review. Critical Reviews in Food Science and Nutrition 62:3751−67

doi: 10.1080/10408398.2020.1868970
[3]

Zhang ZB, Xiong T, Chen JH, Ye F, Cao JJ, et al. 2023. Understanding the origin and evolution of tea (Camellia sinensis [L.]): genomic advances in tea. Journal of Molecular Evolution 91:156−68

doi: 10.1007/s00239-023-10099-z
[4]

Wu Q, Tong W, Zhao H, Ge R, Li R, et al. 2022. Comparative transcriptomic analysis unveils the deep phylogeny and secondary metabolite evolution of 116 Camellia plants. The Plant Journal 111:406−21

doi: 10.1111/tpj.15799
[5]

Rubel Mozumder NM, Lee JE, Hong YS. 2025. A comprehensive understanding of Camellia sinensis tea metabolome: from tea plants to processed teas. Annual Review of Food Science and Technology 16:379−402

doi: 10.1146/annurev-food-111523-121252
[6]

Zhang W, Zhang Y, Qiu H, Guo Y, Wan H, et al. 2020. Genome assembly of wild tea tree DASZ reveals pedigree and selection history of tea varieties. Nature Communications 11:3719

doi: 10.1038/s41467-020-17498-6
[7]

Zhao J, Li P, Xia T, Wan X. 2020. Exploring plant metabolic genomics: chemical diversity, metabolic complexity in the biosynthesis and transport of specialized metabolites with the tea plant as a model. Critical Reviews in Biotechnology 40:667−88

doi: 10.1080/07388551.2020.1752617
[8]

Wu W, Shi J, Jin J, Liu Z, Yuan Y, et al. 2023. Comprehensive metabolic analyses provide new insights into primary and secondary metabolites in different tissues of Jianghua Kucha tea (Camellia sinensis var. assamica cv. Jianghua). Frontiers in Nutrition 10:1181135

doi: 10.3389/fnut.2023.1181135
[9]

Bag S, Mondal A, Majumder A, Banik A. 2022. Tea and its phytochemicals: hidden health benefits & modulation of signaling cascade by phytochemicals. Food Chemistry 371:131098

doi: 10.1016/j.foodchem.2021.131098
[10]

Wan X, Xia T. 2015. Secondary metabolism of tea plant. Beijing: Science Press

[11]

Shi J, Yang G, You Q, Sun S, Chen R, et al. 2023. Updates on the chemistry, processing characteristics, and utilization of tea flavonoids in last two decades (2001−2021). Critical Reviews in Food Science and Nutrition 63:4757−84

doi: 10.1080/10408398.2021.2007353
[12]

Asakawa T, Hamashima Y, Kan T. 2013. Chemical synthesis of tea polyphenols and related compounds. Current Pharmaceutical Design 19:6207−17

doi: 10.2174/1381612811319340012
[13]

Li N, Zhao Y, Liang Y. 2013. Cardioprotective effects of tea and its catechins. Health 5:23−30

doi: 10.4236/health.2013.54a004
[14]

Zhuang J, Dai X, Zhu M, Zhang S, Dai Q, et al. 2020. Evaluation of astringent taste of green tea through mass spectrometry-based targeted metabolic profiling of polyphenols. Food Chemistry 305:125507

doi: 10.1016/j.foodchem.2019.125507
[15]

Lv Z, Zhang C, Shao C, Liu B, Liu E, et al. 2021. Research progress on the response of tea catechins to drought stress. Journal of the Science of Food and Agriculture 101:5305−13

doi: 10.1002/jsfa.11330
[16]

Zhang S, Jin J, Chen J, Ercisli S, Chen L. 2022. Purine alkaloids in tea plants: component, biosynthetic mechanism and genetic variation. Beverage Plant Research 2:13

doi: 10.48130/bpr-2022-0013
[17]

da Silva Pinto M. 2013. Tea: a new perspective on health benefits. Food Research International 53:558−67

doi: 10.1016/j.foodres.2013.01.038
[18]

Zeng L, Zhou X, Liao Y, Yang Z. 2021. Roles of specialized metabolites in biological function and environmental adaptability of tea plant (Camellia sinensis) as a metabolite studying model. Journal of Advanced Research 34:159−71

doi: 10.1016/j.jare.2020.11.004
[19]

Li MY, Liu HY, Wu DT, Kenaan A, Geng F, et al. 2022. L-Theanine: a unique functional amino acid in tea (Camellia sinensis L.) with multiple health benefits and food applications. Frontiers in Nutrition 9:853846

doi: 10.3389/fnut.2022.853846
[20]

Cheng S, Fu X, Wang X, Liao Y, Zeng L, et al. 2017. Studies on the biochemical formation pathway of the amino acid L-theanine in tea (Camellia sinensis) and other plants. Journal of Agricultural and Food Chemistry 65:7210−16

doi: 10.1021/acs.jafc.7b02437
[21]

Chang M, Ma J, Sun Y, Tian L, Liu L, et al. 2023. γ-Glutamyl-transpeptidase CsGGT2 functions as light-activated theanine hydrolase in tea plant (Camellia sinensis L.). Plant, Cell & Environment 46:1596−609

doi: 10.1111/pce.14561
[22]

Zeng L, Watanabe N, Yang Z. 2019. Understanding the biosyntheses and stress response mechanisms of aroma compounds in tea (Camellia sinensis) to safely and effectively improve tea aroma. Critical Reviews in Food Science and Nutrition 59:2321−34

doi: 10.1080/10408398.2018.1506907
[23]

Yang Z, Baldermann S, Watanabe N. 2013. Recent studies of the volatile compounds in tea. Food Research International 53:585−99

doi: 10.1016/j.foodres.2013.02.011
[24]

Jin J, Zhao M, Jing T, Zhang M, Lu M, et al. 2023. Volatile compound-mediated plant-plant interactions under stress with the tea plant as a model. Horticulture Research 10:uhad143

doi: 10.1093/hr/uhad143
[25]

Qaderi MM, Martel AB, Strugnell CA. 2023. Environmental factors regulate plant secondary metabolites. Plants 12:447

doi: 10.3390/plants12030447
[26]

Ali J, Mukarram M, Ojo J, Dawam N, Riyazuddin R, et al. 2024. Harnessing phytohormones: advancing plant growth and defence strategies for sustainable agriculture. Physiologia Plantarum 176:e14307

doi: 10.1111/ppl.14307
[27]

Li C, Jiang R, Wang X, Lv Z, Li W, et al. 2024. Feedback regulation of plant secondary metabolism: applications and challenges. Plant Science 340:111983

doi: 10.1016/j.plantsci.2024.111983
[28]

Lv ZY, Sun WJ, Jiang R, Chen JF, Ying X, et al. 2021. Phytohormones jasmonic acid, salicylic acid, gibberellins, and abscisic acid are key mediators of plant secondary metabolites. World Journal of Traditional Chinese Medicine 307−25

doi: 10.4103/wjtcm.wjtcm_20_21
[29]

Xiang F, Su Y, Zhou L, Dai C, Jin X, et al. 2024. Gibberellin promotes theanine synthesis by relieving the inhibition of CsWRKY71 on CsTSI in tea plant (Camellia sinensis). Horticulture Research 12:uhae317

doi: 10.1093/hr/uhae317
[30]

Zhu J, Yan X, Liu S, Xia X, An Y, et al. 2022. Alternative splicing of CsJAZ1 negatively regulates flavan-3-ol biosynthesis in tea plants. The Plant Journal 110:243−61

doi: 10.1111/tpj.15670
[31]

Zhang X, Li L, He Y, Lang Z, Zhao Y, et al. 2023. The CsHSFA-CsJAZ6 module-mediated high temperature regulates flavonoid metabolism in Camellia sinensis. Plant, Cell & Environment 46:2401−18

doi: 10.1111/pce.14610
[32]

Li L, Zhang X, Li D, Su H, He Y, et al. 2024. CsPHRs-CsJAZ3 incorporates phosphate signaling and jasmonate pathway to regulate catechin biosynthesis in Camellia sinensis. Horticulture Research 11:uhae178

doi: 10.1093/hr/uhae178
[33]

Yue R, Li Y, Qi Y, Liang X, Zheng Z, et al. 2025. Divergent MYB paralogs determine spatial distribution of linalool mediated by JA and DNA demethylation participating in aroma formation and cold tolerance of tea plants. Plant Biotechnology Journal 23:1455−75

doi: 10.1111/pbi.14598
[34]

Gao C, Wang Z, Wu W, Zhou Z, Deng X, et al. 2024. Transcriptome and metabolome reveal the effects of ABA promotion and inhibition on flavonoid and amino acid metabolism in tea plant. Tree Physiology 44:tpae065

doi: 10.1093/treephys/tpae065
[35]

Jin J, Zhao M, Jing T, Wang J, Lu M, et al. 2023. (Z)-3-Hexenol integrates drought and cold stress signaling by activating abscisic acid glucosylation in tea plants. Plant Physiology 193:1491−507

doi: 10.1093/plphys/kiad346
[36]

Ming TL. 1992. A revision of Camellia Sect. Thea. Acta Botanica Yunnanica 14:115−32

[37]

Chen L, Yu FL, Tong QQ. 2000. Discussions on phylogenetic classification and evolution of Sect. Thea. Journal of Tea Science 20(2):89−94

doi: 10.3969/j.issn.1000-369X.2000.02.00
[38]

Yao MZ, Ma CL, Qiao TT, Jin JQ, Chen L. 2012. Diversity distribution and population structure of tea germplasms in China revealed by EST-SSR markers. Tree Genetics & Genomes 8:205−20

doi: 10.1007/s11295-011-0433-z
[39]

Das SC, Das S, Hazarika M. 2012. Breeding of the tea plant (Camellia sinensis) in India. In Global Tea Breeding: Achievements, Challenges and Perspectives, eds Chen L, Apostolides Z, Chen ZM. Beijing: Springer. pp. 69–124 doi: 10.1007/978-3-642-31878-8_3

[40]

Kamunya SM, Wachira FN, Pathak RS, Muoki RC, Sharma RK. 2012. Tea improvement in Kenya. In Global Tea Breeding, eds Chen L, Apostolides Z, Chen ZM. Beijing: Springer. pp. 177–226 doi: 10.1007/978-3-642-31878-8_5

[41]

Riyadh. 2023. Decisions adopted by the World Heritage Committee at its extended 45th session. https://whc.unesco.org/en/sessions/45COM

[42]

Taniguchi F, Kimura K, Saba T, Ogino A, Yamaguchi S, et al. 2014. Worldwide core collections of tea (Camellia sinensis) based on SSR markers. Tree Genetics & Genomes 10:1555−65

doi: 10.1007/s11295-014-0779-0
[43]

Ranatunga MAB. 2019. Advances in tea [Camellia sinensis (L.) O. Kuntze] breeding. In Advances in Plant Breeding Strategies: Nut and Beverage Crops, eds Al-Khayri J, Jain S, Johnson D. Cham: Springer. pp. 517–65 doi: 10.1007/978-3-030-23112-5_13

[44]

Wang X, Chen L, Yang Y. 2011. Establishment of core collection for Chinese tea germplasm based on cultivated region grouping and phenotypic data. Frontiers of Agriculture in China 5:344−50

doi: 10.1007/s11703-011-1097-z
[45]

Kong W, Kong X, Xia Z, Li X, Wang F, et al. 2025. Genomic analysis of 1, 325 Camellia accessions sheds light on agronomic and metabolic traits for tea plant improvement. Nature Genetics 57:997−1007

doi: 10.1038/s41588-025-02135-z
[46]

Yang YJ, Liang YR. 2014. Tea plant clonal varieties in China. Shanghai: Shanghai Scientific & Technical Publisher

[47]

Chen L, Zhou ZX. 2005. Variations of main quality components of tea genetic resources [Camellia sinensis (L.) O. Kuntze] preserved in the China national germplasm tea repository. Plant Foods for Human Nutrition 60:31−35

doi: 10.1007/s11130-005-2540-1
[48]

Tariq A, Meng M, Jiang X, Bolger A, Beier S, et al. 2024. In-depth exploration of the genomic diversity in tea varieties based on a newly constructed pangenome of Camellia sinensis. The Plant Journal 119:2096−115

doi: 10.1111/tpj.16874
[49]

Li T, Wang S, Shi D, Fang W, Jiang T, et al. 2023. Phosphate deficiency induced by infection promotes synthesis of anthracnose-resistant anthocyanin-3-O-galactoside phytoalexins in the Camellia sinensis plant. Horticulture Research 10:uhad222

doi: 10.1093/hr/uhad222
[50]

Li CF, Ma JQ, Huang DJ, Ma CL, Jin JQ, et al. 2018. Comprehensive dissection of metabolic changes in albino and green tea cultivars. Journal of Agricultural and Food Chemistry 66:2040−48

doi: 10.1021/acs.jafc.7b05623
[51]

Xia EH, Zhang HB, Sheng J, Li K, Zhang QJ, et al. 2017. The tea tree genome provides insights into tea flavor and independent evolution of caffeine biosynthesis. Molecular Plant 10:866−77

doi: 10.1016/j.molp.2017.04.002
[52]

Jung H, Winefield C, Bombarely A, Prentis P, Waterhouse P. 2019. Tools and strategies for long-read sequencing and de novo assembly of plant genomes. Trends in Plant Science 24:700−24

doi: 10.1016/j.tplants.2019.05.003
[53]

Wang F, Zhang B, Wen D, Liu R, Yao X, et al. 2022. Chromosome-scale genome assembly of Camellia sinensis combined with multi-omics provides insights into its responses to infestation with green leafhoppers. Frontiers in Plant Science 13:1004387

doi: 10.3389/fpls.2022.1004387
[54]

Wang X, Feng H, Chang Y, Ma C, Wang L, et al. 2020. Population sequencing enhances understanding of tea plant evolution. Nature Communications 11:4447

doi: 10.1038/s41467-020-18228-8
[55]

Rawal HC, Borchetia S, Rohilla M, Mazumder A, Gogoi M, et al. 2024. First chromosome-scale genome of Indian tea (Camellia assamica Masters; syn C. sinensis var assamica) cultivar TV 1 reveals its evolution and domestication of caffeine synthesis. Industrial Crops and Products 222:119992

doi: 10.1016/j.indcrop.2024.119992
[56]

Kawahara Y, Tanaka J, Takayama K, Wako T, Ogino A, et al. 2024. Chromosome-scale genome assembly and characterization of top-quality Japanese green tea cultivar 'Seimei'. Plant and Cell Physiology 65:1271−84

doi: 10.1093/pcp/pcae060
[57]

Li X, Lei W, You X, Kong X, Chen Z, et al. 2024. The tea cultivar 'Chungui' with jasmine-like aroma: from genome and epigenome to quality. International Journal of Biological Macromolecules 281:136352

doi: 10.1016/j.ijbiomac.2024.136352
[58]

Wei C, Yang H, Wang S, Zhao J, Liu C, et al. 2018. Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality. Proceedings of the National Academy of Sciences of the United States of America 115:E4151−E4158

doi: 10.1073/pnas.1719622115
[59]

Šimková H, Câmara AS, Mascher M. 2024. Hi-C techniques: from genome assemblies to transcription regulation. Journal of Experimental Botany 75:5357−65

doi: 10.1093/jxb/erae085
[60]

Zhang QJ, Li W, Li K, Nan H, Shi C, et al. 2020. The chromosome-level reference genome of tea tree unveils recent bursts of non-autonomous LTR retrotransposons in driving genome size evolution. Molecular Plant 13:935−38

doi: 10.1016/j.molp.2020.04.009
[61]

Chen JD, Zheng C, Ma JQ, Jiang CK, Ercisli S, et al. 2020. The chromosome-scale genome reveals the evolution and diversification after the recent tetraploidization event in tea plant. Horticulture Research 7:63

doi: 10.1038/s41438-020-0288-2
[62]

Wang P, Yu J, Jin S, Chen S, Yue C, et al. 2021. Genetic basis of high aroma and stress tolerance in the oolong tea cultivar genome. Horticulture Research 8:107

doi: 10.1038/s41438-021-00542-x
[63]

Zhang X, Chen S, Shi L, Gong D, Zhang S, et al. 2021. Haplotype-resolved genome assembly provides insights into evolutionary history of the tea plant Camellia sinensis. Nature Genetics 53:1250−59

doi: 10.1038/s41588-021-00895-y
[64]

Xia E, Tong W, Hou Y, An Y, Chen L, et al. 2020. The reference genome of tea plant and resequencing of 81 diverse accessions provide insights into its genome evolution and adaptation. Molecular Plant 13:1013−26

doi: 10.1016/j.molp.2020.04.010
[65]

Xie H, Zhu J, Wang H, Zhang L, Tong X, et al. 2025. An enhancer-transposable element from purple leaf tea varieties underlies the transition from evergreen to purple leaf color. Plant Communications 6:101176

doi: 10.1016/j.xplc.2024.101176
[66]

Chen S, Wang P, Kong W, Chai K, Zhang S, et al. 2023. Gene mining and genomics-assisted breeding empowered by the pangenome of tea plant Camellia sinensis. Nature Plants 9:1986−99

doi: 10.1038/s41477-023-01565-z
[67]

Qiao D, Lei W, Mi X, Yang C, Liang S, et al. 2025. Three-dimensional genomic structure and aroma formation in the tea cultivar 'Qiancha 1'. Horticulture Research 12:uhaf064

doi: 10.1093/hr/uhaf064
[68]

Kong W, Yu J, Yang J, Zhang Y, Zhang X. 2023. The high-resolution three-dimensional (3D) chromatin map of the tea plant (Camellia sinensis). Horticulture Research 10:uhad179

doi: 10.1093/hr/uhad179
[69]

Lee JE, Lee BJ, Chung JO, Kim HN, Kim EH, et al. 2015. Metabolomic unveiling of a diverse range of green tea (Camellia sinensis) metabolites dependent on geography. Food Chemistry 174:452−59

doi: 10.1016/j.foodchem.2014.11.086
[70]

Cui C, Xu Y, Jin G, Zong J, Peng C, et al. 2023. Machine learning applications for identify the geographical origin, variety and processing of black tea using 1H NMR chemical fingerprinting. Food Control 148:109686

doi: 10.1016/j.foodcont.2023.109686
[71]

Deng X, Wu J, Wang T, Dai H, Chen J, et al. 2023. Combined metabolic phenotypes and gene expression profiles revealed the formation of terpene and ester volatiles during white tea withering process. Beverage Plant Research 3:21

doi: 10.48130/BPR-2023-0021
[72]

Wang P, Gu M, Shao S, Chen X, Hou B, et al. 2022. Changes in non-volatile and volatile metabolites associated with heterosis in tea plants (Camellia sinensis). Journal of Agricultural and Food Chemistry 70:3067−78

doi: 10.1021/acs.jafc.1c08248
[73]

Barth HG, Barber WE, Lochmüller CH, Majors RE, Regnier FE. 1988. Column liquid chromatography. Analytical Chemistry 60:387−435

doi: 10.1021/ac00163a025
[74]

Zhou B, Ma C, Ren X, Xia T, Li X. 2020. LC–MS/MS-based metabolomic analysis of caffeine-degrading fungus Aspergillus sydowii during tea fermentation. Journal of Food Science 85:477−85

doi: 10.1111/1750-3841.15015
[75]

Dai Y, Yang T, Luo J, Fang S, Zhang T, et al. 2025. Changes in alkaloids and their related metabolites during the processing of 'Qiancha 1' white tea based on transcriptomic and metabolomic analysis. LWT 218:117435

doi: 10.1016/j.lwt.2025.117435
[76]

Pulimamidi SS, Naik DD, Yadav M, Suryawanshi KG, Marathe SS, et al. 2024. Seasonal dynamics of phytometabolites content in Assam tea, Camellia sinensis var. assamica by LC-MS/MS: implications for quality. Journal of Food Composition and Analysis 134:106546

doi: 10.1016/j.jfca.2024.106546
[77]

Umehara M, Yanae K, Maruki-Uchida H, Sai M. 2017. Investigation of epigallocatechin-3-O-caffeoate and epigallocatechin-3-O-p-coumaroate in tea leaves by LC/MS-MS analysis. Food Research International 102:77−83

doi: 10.1016/j.foodres.2017.09.086
[78]

Zhang XL, Jia XX, Ren YJ, Gao DW, Wen WW. 2024. Metabolomics of tea plants. In The Tea Plant Genome, eds Chen L, Chen JD. Singapore: Springer. pp. 283–313. doi: 10.1007/978-981-97-0680-8_13

[79]

Lu W, Chen J, Li X, Qi Y, Jiang R. 2023. Flavor components detection and discrimination of isomers in Huaguo tea using headspace-gas chromatography-ion mobility spectrometry and multivariate statistical analysis. Analytica Chimica Acta 1243:340842

doi: 10.1016/j.aca.2023.340842
[80]

Wang Q, Xie J, Wang L, Jiang Y, Deng Y, et al. 2024. Comprehensive investigation on the dynamic changes of volatile metabolites in fresh scent green tea during processing by GC-E-Nose, GC–MS, and GC × GC-TOFMS. Food Research International 187:114330

doi: 10.1016/j.foodres.2024.114330
[81]

Jia M, Chen Y, Zhang Q, Wang Y, Li M, et al. 2024. Changes in the growth and physiological property of tea tree after aviation mutagenesis and screening and functional verification of its characteristic hormones. Frontiers in Plant Science 15:1402451

doi: 10.3389/fpls.2024.1402451
[82]

Daglia M, Antiochia R, Sobolev AP, Mannina L. 2014. Untargeted and targeted methodologies in the study of tea (Camellia sinensis L.). Food Research International 63:275−89

doi: 10.1016/j.foodres.2014.03.070
[83]

Zhang K, Ren T, Liao J, Wang S, Zou Z, et al. 2021. Targeted metabolomics reveals dynamic changes during the manufacturing process of Yuhua tea, a stir-fried green tea. Beverage Plant Research 1:6

doi: 10.48130/bpr-2021-0006
[84]

Zhou Y, Luo F, Gong X, Liu D, Li L, et al. 2022. Targeted metabolomics and DIA proteomics-based analyses of proteinaceous amino acids and driving proteins in black tea during withering. LWT 165:113701

doi: 10.1016/j.lwt.2022.113701
[85]

Navarro-Reig M, Tauler R, Iriondo-Frias G, Jaumot J. 2019. Untargeted lipidomic evaluation of hydric and heat stresses on rice growth. Journal of Chromatography B 1104:148−56

doi: 10.1016/j.jchromb.2018.11.018
[86]

Chen S, Lin J, Liu H, Gong Z, Wang X, et al. 2018. Insights into tissue-specific specialized metabolism in Tieguanyin tea cultivar by untargeted metabolomics. Molecules 23:1817

doi: 10.3390/molecules23071817
[87]

Zhao J, Liu W, Chen Y, Zhang X, Wang X, et al. 2022. Identification of markers for tea authenticity assessment: non-targeted metabolomics of highly similar oolong tea cultivars (Camellia sinensis var. sinensis). Food Control 142:109223

doi: 10.1016/j.foodcont.2022.109223
[88]

Zhu G, Wang S, Huang Z, Zhang S, Liao Q, et al. 2018. Rewiring of the fruit metabolome in tomato breeding. Cell 172:249−261.e12

doi: 10.1016/j.cell.2017.12.019
[89]

Wang Z, Gan S, Sun W, Chen Z. 2022. Widely targeted metabolomics analysis reveals the differences of nonvolatile compounds in oolong tea in different production areas. Foods 11:1057

doi: 10.3390/foods11071057
[90]

Ruan H, Gao L, Fang Z, Lei T, Xing D, et al. 2024. A flavonoid metabolon: cytochrome b5 enhances B-ring trihydroxylated flavan-3-ols synthesis in tea plants. The Plant Journal 118:1793−814

doi: 10.1111/tpj.16710
[91]

Jin JQ, Qu FR, Huang H, Liu QS, Wei MY, et al. 2023. Characterization of two O-methyltransferases involved in the biosynthesis of O-methylated catechins in tea plant. Nature Communications 14:5075

doi: 10.1038/s41467-023-40868-9
[92]

Ma JQ, Yao MZ, Ma CL, Wang XC, Jin JQ, et al. 2014. Construction of a SSR-based genetic map and identification of QTLs for catechins content in tea plant (Camellia sinensis). PLos One 9:e93131

doi: 10.1371/journal.pone.0093131
[93]

Huang R, Wang JY, Yao MZ, Ma CL, Chen L. 2022. Quantitative trait loci mapping for free amino acid content using an albino population and SNP markers provides insight into the genetic improvement of tea plants. Horticulture Research 9:uhab029

doi: 10.1093/hr/uhab029
[94]

Wang Y, Jin JQ, Zhang R, He M, Wang L, et al. 2024. Association analysis of BSA-seq, BSR-seq, and RNA-seq reveals key genes involved in purple leaf formation in a tea population (Camellia sinensis). Horticulture Research 11:uhae191

doi: 10.1093/hr/uhae191
[95]

Yu X, Xiao J, Chen S, Yu Y, Ma J, et al. 2020. Metabolite signatures of diverse Camellia sinensis tea populations. Nature Communications 11:5586

doi: 10.1038/s41467-020-19441-1
[96]

Fang K, Xia Z, Li H, Jiang X, Qin D, et al. 2021. Genome-wide association analysis identified molecular markers associated with important tea flavor-related metabolites. Horticulture Research 8:42

doi: 10.1038/s41438-021-00477-3
[97]

Yamashita H, Uchida T, Tanaka Y, Katai H, Nagano AJ, et al. 2020. Genomic predictions and genome-wide association studies based on RAD-seq of quality-related metabolites for the genomics-assisted breeding of tea plants. Scientific Reports 10:17480

doi: 10.1038/s41598-020-74623-7
[98]

Qiu H, Zhang X, Zhang Y, Jiang X, Ren Y, et al. 2024. Depicting the genetic and metabolic panorama of chemical diversity in the tea plant. Plant Biotechnology Journal 22:1001−16

doi: 10.1111/pbi.14241
[99]

Yao W, Huang X, Xie N, Yan H, Li J, et al. 2024. Acetylation participation in theanine biosynthesis: insights from transcriptomics, proteomics, and acetylomics. Plant Physiology and Biochemistry 216:109134

doi: 10.1016/j.plaphy.2024.109134
[100]

Chen JD, He WZ, Chen S, Chen QY, Ma JQ, et al. 2022. TeaGVD: a comprehensive database of genomic variations for uncovering the genetic architecture of metabolic traits in tea plants. Frontiers in Plant Science 13:1056891

doi: 10.3389/fpls.2022.1056891