[1]

Food and Agriculture Organization of the United Nations (FAO). 2024. Current global market situation and medium-term outlook. Rome, Italy: FAO. https://openknowledge.fao.org/handle/20.500.14283/cd0688en

[2]

Yang M, Zhang X, Yang CS. 2025. Bioavailability of tea polyphenols: a key factor in understanding their mechanisms of action in vivo and health effects. Journal of Agricultural and Food Chemistry 73:3816−25

doi: 10.1021/acs.jafc.4c09205
[3]

Sang S, Lambert JD, Ho CT, Yang CS. 2011. The chemistry and biotransformation of tea constituents. Pharmacological Research 64:87−99

doi: 10.1016/j.phrs.2011.02.007
[4]

Balentine DA, Wiseman SA, Bouwens LC. 1997. The chemistry of tea flavonoids. Critical Reviews in Food Science and Nutrition 37:693−704

doi: 10.1080/10408399709527797
[5]

Menet MC, Sang S, Yang CS, Ho CT, Rosen RT. 2004. Analysis of theaflavins and thearubigins from black tea extract by MALDI-TOF mass spectrometry. Journal of Agricultural and Food Chemistry 52:2455−61

doi: 10.1021/jf035427e
[6]

Yang CS, Hong J. 2013. Prevention of chronic diseases by tea: possible mechanisms and human relevance. Annual Review of Nutrition 33:161−81

doi: 10.1146/annurev-nutr-071811-150717
[7]

Yang CS, Zhang J. 2019. Studies on the prevention of cancer and cardiometabolic diseases by tea: issues on mechanisms, effective doses, and toxicities. Journal of Agricultural and Food Chemistry 67:5446−56

doi: 10.1021/acs.jafc.8b05242
[8]

Kim Y, Je Y. 2024. Tea consumption and risk of all-cause, cardiovascular disease, and cancer mortality: a meta-analysis of thirty-eight prospective cohort data sets. Epidemiology and Health 46:e2024056

doi: 10.4178/epih.e2024056
[9]

Inoue-Choi M, Ramirez Y, Cornelis MC, Berrington de González A, Freedman ND, et al. 2022. Tea consumption and all-cause and cause-specific mortality in the UK biobank: a prospective cohort study. Annals of Internal Medicine 175:1201−11

doi: 10.7326/M22-0041
[10]

Dryer-Beers ER, Griffin J, Matthews PM, Frost GS. 2024. Higher dietary polyphenol intake is associated with lower blood inflammatory markers. The Journal of Nutrition 154:2470−80

doi: 10.1016/j.tjnut.2024.05.005
[11]

Li X, Song P, Li J, Wang P, Li G. 2015. Relationship between hyperuricemia and dietary risk factors in Chinese adults: a cross-sectional study. Rheumatology International 35:2079−89

doi: 10.1007/s00296-015-3315-0
[12]

Wu C, Suzuki K. 2023. The effects of flavonoids on skeletal muscle mass, muscle function, and physical performance in individuals with sarcopenia: a systematic review of randomized controlled trials. Nutrients 15:3897

doi: 10.3390/nu15183897
[13]

Talib WH, Awajan D, Alqudah A, Alsawwaf R, Althunibat R, et al. 2024. Targeting cancer hallmarks with epigallocatechin gallate (EGCG): mechanistic basis and therapeutic targets. Molecules 29:1373

doi: 10.3390/molecules29061373
[14]

Li D, Wang R, Huang J, Cai Q, Yang CS, et al. 2019. Effects and mechanisms of tea regulating blood pressure: evidences and promises. Nutrients 11:1115

doi: 10.3390/nu11051115
[15]

Yarmolinsky J, Gon G, Edwards P. 2015. Effect of tea on blood pressure for secondary prevention of cardiovascular disease: a systematic review and meta-analysis of randomized controlled trials. Nutrition Reviews 73:236−46

doi: 10.1093/nutrit/nuv001
[16]

Gao J, Akbari A, Wang T. 2022. Green tea could improve elderly hypertension by modulating arterial stiffness, the activity of the renin/angiotensin/aldosterone axis, and the sodium-potassium pumps in old male rats. Journal of Food Biochemistry 46:e14398

doi: 10.1111/jfbc.14398
[17]

Wang W, Yang Y, Zhang W, Wu W. 2014. Association of tea consumption and the risk of oral cancer: a meta-analysis. Oral Oncology 50:276−81

doi: 10.1016/j.oraloncology.2013.12.014
[18]

Tang N, Wu Y, Zhou B, Wang B, Yu R. 2009. Green tea, black tea consumption and risk of lung cancer: a meta-analysis. Lung Cancer 65:274−83

doi: 10.1016/j.lungcan.2008.12.002
[19]

Sun CL, Yuan JM, Koh WP, Yu MC. 2006. Green tea, black tea and colorectal cancer risk: a meta-analysis of epidemiologic studies. Carcinogenesis 27:1301−9

doi: 10.1093/carcin/bgl024
[20]

Hursel R, Westerterp-Plantenga MS. 2013. Catechin- and caffeine-rich teas for control of body weight in humans. The American Journal of Clinical Nutrition 98:1682S−1693S

doi: 10.3945/ajcn.113.058396
[21]

Basu A, Sanchez K, Leyva MJ, Wu M, Betts NM, et al. 2010. Green tea supplementation affects body weight, lipids, and lipid peroxidation in obese subjects with metabolic syndrome. Journal of the American College of Nutrition 29:31−40

doi: 10.1080/07315724.2010.10719814
[22]

Wang H, Wen Y, Du Y, Yan X, Guo H, et al. 2010. Effects of catechin enriched green tea on body composition. Obesity 18:773−79

doi: 10.1038/oby.2009.256
[23]

Huxley R, Lee CM, Barzi F, Timmermeister L, Czernichow S, et al. 2009. Coffee, decaffeinated coffee, and tea consumption in relation to incident type 2 diabetes mellitus: a systematic review with meta-analysis. Archives of Internal Medicine 169:2053−63

doi: 10.1001/archinternmed.2009.439
[24]

Liu X, Xu W, Cai H, Gao YT, Li H, et al. 2018. Green tea consumption and risk of type 2 diabetes in Chinese adults: the Shanghai Women's Health Study and the Shanghai Men's Health Study. International Journal of Epidemiology 47:1887−96

doi: 10.1093/ije/dyy173
[25]

Yu J, Song P, Perry R, Penfold C, Cooper AR. 2017. The effectiveness of green tea or green tea extract on insulin resistance and glycemic control in type 2 diabetes mellitus: a meta-analysis. Diabetes & Metabolism Journal 41:251−62

doi: 10.4093/dmj.2017.41.4.251
[26]

Polito CA, Cai ZY, Shi YL, Li XM, Yang R, et al. 2018. Association of tea consumption with risk of Alzheimer's disease and anti-beta-amyloid effects of tea. Nutrients 10:655

doi: 10.3390/nu10050655
[27]

Ma QP, Huang C, Cui QY, Yang DJ, Sun K, et al. 2016. Meta-analysis of the association between tea intake and the risk of cognitive disorders. PLoS One 11:e0165861

doi: 10.1371/journal.pone.0165861
[28]

Sukik L, Liu J, Shi Z. 2022. Tea consumption is associated with reduced cognitive decline and interacts with iron intake: a population-based longitudinal study on 4, 820 old adults. Journal of Alzheimer's Disease 90:271−82

doi: 10.3233/JAD-220344
[29]

Zhang R, Zhang L, Li Z, Zhang P, Song H, et al. 2022. Green tea improves cognitive function through reducing AD-pathology and improving anti-oxidative stress capacity in Chinese middle-aged and elderly people. Frontiers in Aging Neuroscience 14:919766

doi: 10.3389/fnagi.2022.919766
[30]

Zhou S, Zhu Y, Ren N, Wu M, Liu Y. 2025. The Association between green tea consumption and cognitive function: a meta-analysis of current evidence. Neuroepidemiology 13:1−22

doi: 10.1159/000543784
[31]

Lopes Sakamoto F, Metzker Pereira Ribeiro R, Amador Bueno A, Oliveira Santos H. 2019. Psychotropic effects of L-theanine and its clinical properties: from the management of anxiety and stress to a potential use in schizophrenia. Pharmacological Research 147:104395

doi: 10.1016/j.phrs.2019.104395
[32]

Wang X, Yin Y, Zhou H, Chi B, Guan L, et al. 2024. Drug delivery pathways to the central nervous system via the brain glymphatic system circumventing the blood-brain barrier. Exploration 5:20240036

doi: 10.1002/EXP.20240036
[33]

Seo H, Lee SH, Park Y, Lee HS, Hong JS, et al. 2021. (-)-Epicatechin-enriched extract from Camellia sinensis improves regulation of muscle mass and function: results from a randomized controlled trial. Antioxidants 10:1026

doi: 10.3390/antiox10071026
[34]

Tokuda Y, Mori H. 2023. Essential amino acid and tea catechin supplementation after resistance exercise improves skeletal muscle mass in older adults with sarcopenia: an open-label, pilot, randomized controlled trial. Journal of the American Nutrition Association 42:255−62

doi: 10.1080/07315724.2022.2025546
[35]

Alway SE, Bennett BT, Wilson JC, Sperringer J, Mohamed JS, et al. 2015. Green tea extract attenuates muscle loss and improves muscle function during disuse, but fails to improve muscle recovery following unloading in aged rats. Journal of Applied Physiology 118:319−30

doi: 10.1152/japplphysiol.00674.2014
[36]

Kawakami Y, Yasuda A, Hayashi M, Akiyama M, Asai T, et al. 2021. Acute effect of green tea catechins on uric acid metabolism after alcohol ingestion in Japanese men. Clinical Rheumatology 40:2881−88

doi: 10.1007/s10067-021-05625-7
[37]

Sang S, Wang L, Liang T, Su M, Li H. 2022. Potential role of tea drinking in preventing hyperuricaemia in rats: biochemical and molecular evidence. Chinese Medicine 17:108

doi: 10.1186/s13020-022-00664-x
[38]

Bogdanski P, Suliburska J, Szulinska M, Stepien M, Pupek-Musialik D, et al. 2012. Green tea extract reduces blood pressure, inflammatory biomarkers, and oxidative stress and improves parameters associated with insulin resistance in obese, hypertensive patients. Nutrition Research 32:421−27

doi: 10.1016/j.nutres.2012.05.007
[39]

Hsu SP, Wu MS, Yang CC, Huang KC, Liou SY, et al. 2007. Chronic green tea extract supplementation reduces hemodialysis-enhanced production of hydrogen peroxide and hypochlorous acid, atherosclerotic factors, and proinflammatory cytokines. The American Journal of Clinical Nutrition 86:1539−47

doi: 10.1093/ajcn/86.5.1539
[40]

Taylor PW. 2020. Interactions of tea-derived catechin gallates with bacterial pathogens. Molecules 25:1986

doi: 10.3390/molecules25081986
[41]

Lu J, Shen X, Li H, Du J. 2024. Recent advances in bacteria-based platforms for inflammatory bowel diseases treatment. Exploration 4:20230142

doi: 10.1002/EXP.20230142
[42]

Liu Z, Guo H, Zhang W, Ni L. 2020. Salivary microbiota shifts under sustained consumption of oolong tea in healthy adults. Nutrients 12:966

doi: 10.3390/nu12040966
[43]

Kaneko K, Shimano N, Suzuki Y, Nakamukai M, Ikazaki R, et al. 1993. Effects of tea catechins on oral odor and dental plaque. Oral Therapeutics and Pharmacology 12:189−97 (in Japanese)

doi: 10.11263/jsotp1982.12.189
[44]

Zhou S, Bao Z, Ma S, Ou C, Hu H, et al. 2023. A local dark tea – Liubao tea – extract exhibits remarkable performance in oral tissue regeneration, inflammation relief and oral microbiota reconstruction. Food & Function 14:7400−12

doi: 10.1039/D3FO02277C
[45]

Kaihatsu K, Yamabe M, Ebara Y. 2018. Antiviral mechanism of action of epigallocatechin-3-O-gallate and its fatty acid esters. Molecules 23:2475

doi: 10.3390/molecules23102475
[46]

Zhang Z, Zhang X, Bi K, He Y, Yan W, et al. 2021. Potential protective mechanisms of green tea polyphenol EGCG against COVID-19. Trends in Food Science & Technology 114:11−24

doi: 10.1016/j.jpgs.2021.05.023
[47]

Bettuzzi S, Gabba L, Cataldo S. 2021. Efficacy of a polyphenolic, standardized green tea extract for the treatment of COVID-19 syndrome: a proof-of-principle study. Covid 1:2−12

doi: 10.3390/covid1010002
[48]

Yamada H, Takuma N, Daimon T, Hara Y. 2006. Gargling with tea catechin extracts for the prevention of influenza infection in elderly nursing home residents: a prospective clinical study. Journal of Alternative and Complementary Medicine 12:669−72

doi: 10.1089/acm.2006.12.669
[49]

Wu H, Chen Y, Feng W, Shen S, Wei Y, et al. 2022. Effects of three different withering treatments on the aroma of white tea. Foods 11:2502

doi: 10.3390/foods11162502
[50]

Li S, Zhang L, Wan X, Zhan J, Ho CT. 2022. Focusing on the recent progress of tea polyphenol chemistry and perspectives. Food Science and Human Wellness 11:437−44

doi: 10.1016/j.fshw.2021.12.033
[51]

Fu Z, Chen L, Zhou S, Hong Y, Zhang X, et al. 2024. Analysis of differences in the accumulation of tea compounds under various processing techniques, geographical origins, and harvesting seasons. Food Chemistry 430:137000

doi: 10.1016/j.foodchem.2023.137000
[52]

Wang Y, Kan Z, Thompson HJ, Ling T, Ho CT, et al. 2019. Impact of six typical processing methods on the chemical composition of tea leaves using a single Camellia sinensis cultivar, Longjing 43. Journal of Agricultural and Food Chemistry 67:5423−36

doi: 10.1021/acs.jafc.8b05140
[53]

Ma C, Ma B, Zhou B, Xu L, Hu Z, et al. 2024. Pile-fermentation mechanism of ripened Pu-erh tea: Omics approach, chemical variation and microbial effect. Trends in Food Science & Technology 146:104379

doi: 10.1016/j.jpgs.2024.104379
[54]

Zeng L, Watanabe N, Yang Z. 2019. Understanding the biosyntheses and stress response mechanisms of aroma compounds in tea (Camellia sinensis) to safely and effectively improve tea aroma. Critical Reviews in Food Science and Nutrition 59:2321−34

doi: 10.1080/10408398.2018.1506907
[55]

Shi J, Ma W, Wang C, Wu W, Tian J, et al. 2021. Impact of various microbial-fermented methods on the chemical profile of dark tea using a single raw tea material. Journal of Agricultural and Food Chemistry 69:4210−22

doi: 10.1021/acs.jafc.1c00598
[56]

Sun L, Xu H, Ye J, Gaikwad NW. 2019. Comparative effect of black, green, oolong, and white tea intake on weight gain and bile acid metabolism. Nutrition 65:208−15

doi: 10.1016/j.nut.2019.02.006
[57]

Kuo KL, Weng MS, Chiang CT, Tsai YJ, Lin-Shiau SY, et al. 2005. Comparative studies on the hypolipidemic and growth suppressive effects of oolong, black, pu-erh, and green tea leaves in rats. Journal of Agricultural and Food Chemistry 53:480−89

doi: 10.1021/jf049375k
[58]

Cheng M, Zhang X, Miao Y, Cao J, Wu Z, et al. 2017. The modulatory effect of (-)-epigallocatechin 3-O-(3-O-methyl) gallate (EGCG3″Me) on intestinal microbiota of high fat diet-induced obesity mice model. Food Research International 92:9−16

doi: 10.1016/j.foodres.2016.12.008
[59]

Liu C, Guo Y, Sun L, Lai X, Li Q, et al. 2019. Six types of tea reduce high-fat-diet-induced fat accumulation in mice by increasing lipid metabolism and suppressing inflammation. Food & Function 10:2061−74

doi: 10.1039/C8FO02334D
[60]

Zhou F, Zhu MZ, Tang JY, Ou-yang J, Shang BH, et al. 2022. Six types of tea extracts attenuated high-fat diet-induced metabolic syndrome via modulating gut microbiota in rats. Food Research International 161:111788

doi: 10.1016/j.foodres.2022.111788
[61]

Wu D, Chen R, Li Q, Lai X, Sun L, et al. 2022. Tea (Camellia sinensis) ameliorates hyperuricemia via uric acid metabolic pathways and gut microbiota. Nutrients 14:2666

doi: 10.3390/nu14132666
[62]

Liu H, Chen R, Wen S, Li Q, Lai X, et al. 2023. Tea (Camellia sinensis) ameliorates DSS-induced colitis and liver injury by inhibiting TLR4/NF-κB/NLRP3 inflammasome in mice. Biomedicine & Pharmacotherapy 158:114136

doi: 10.1016/j.biopha.2022.114136
[63]

Guan F, Liu AB, Li G, Yang Z, Sun Y, et al. 2012. Deleterious effects of high concentrations of (−)-epigallocatechin-3-gallate and atorvastatin in mice with colon inflammation. Nutrition and Cancer 64:847−55

doi: 10.1080/01635581.2012.695424
[64]

Yang CS, Wang X, Lu G, Picinich SC. 2009. Cancer prevention by tea: animal studies, molecular mechanisms and human relevance. Nature Reviews Cancer 9:429−39

doi: 10.1038/nrc2641
[65]

Chen T, Yang CS. 2020. Biological fates of tea polyphenols and their interactions with microbiota in the gastrointestinal tract: implications on health effects. Critical Reviews in Food Science and Nutrition 60:2691−709

doi: 10.1080/10408398.2019.1654430
[66]

Zhou F, Shang BH, Liu CW, Fang WW, Wen S, et al. 2025. Comparative study of the anti-obesity effects of white tea and dark tea: insights from microbiome and metabolomics. Food Research International 202:115666

doi: 10.1016/j.foodres.2025.115666
[67]

Fang WW, Wang KF, Zhou F, Ou-yang J, Zhang ZY, et al. 2023. Oolong tea of different years protects high-fat diet-fed mice against obesity by regulating lipid metabolism and modulating the gut microbiota. Food & Function 14:2668−83

doi: 10.1039/D2FO03577D
[68]

Zhou H, Li F, Wu M, Zhu J, Wang Y, et al. 2023. Regulation of glucolipid metabolism and gut microbiota by green and black teas in hyperglycemic mice. Food & Function 14:4327−38

doi: 10.1039/D3FO00355H
[69]

Chen Z, Zhu QY, Tsang D, Huang Y. 2001. Degradation of green tea catechins in tea drinks. Journal of Agricultural and Food Chemistry 49:477−82

doi: 10.1021/jf000877h
[70]

Cao Y, Xu A, Tao M, Wang S, Yu Q, et al. 2025. Flavor evolution of unsweetened green tea beverage during actual storage: insights from multi-omics analysis. Food Chemistry 481:144039

doi: 10.1016/j.foodchem.2025.144039
[71]

Hung WL, Wang S, Sang S, Wan X, Wang Y, et al. 2018. Quantification of ascorbyl adducts of epigallocatechin gallate and gallocatechin gallate in bottled tea beverages. Food Chemistry 261:246−52

doi: 10.1016/j.foodchem.2018.04.050
[72]

Le Roy T, Clément K. 2022. Bittersweet: artificial sweeteners and the gut microbiome. Nature Medicine 28:2259−60

doi: 10.1038/s41591-022-02063-z
[73]

Zhao X, Xu S, Xu M, Li Y, Ji S, et al. 2025. Mechanism of starch multi-scale structural in determining the textural properties and formability of starch pearls. International Journal of Biological Macromolecules 287:138283

doi: 10.1016/j.ijbiomac.2024.138283
[74]

de Souza RJ, Mente A, Maroleanu A, Cozma AI, Ha V, et al. 2015. Intake of saturated and trans unsaturated fatty acids and risk of all cause mortality, cardiovascular disease, and type 2 diabetes: systematic review and meta-analysis of observational studies. BMJ 351:h3978

doi: 10.1136/bmj.h3978
[75]

Chen Z-Y, Zhu QY, Wong YF, Zhang Z, Chung HY. 1998. Stabilizing effect of ascorbic acid on green tea catechins. Journal of Agricultural and Food Chemistry 46:2512−16

doi: 10.1021/jf971022g
[76]

Zijp IM, Korver O, Tijburg LB. 2000. Effect of tea and other dietary factors on iron absorption. Critical Reviews in Food Science and Nutrition 40:371−98

doi: 10.1080/10408690091189194
[77]

Shen CL, Wang P, Guerrieri J, Yeh JK, Wang JS. 2008. Protective effect of green tea polyphenols on bone loss in middle-aged female rats. Osteoporosis International 19:979−90

doi: 10.1007/s00198-007-0527-5
[78]

Shen CL, Chyu MC, Wang JS. 2013. Tea and bone health: steps forward in translational nutrition. The American Journal of Clinical Nutrition 98:1694s−1699s

doi: 10.3945/ajcn.113.058255
[79]

Feng J, Tang H, Chen D, Li L. 2015. Monitoring and risk assessment of pesticide residues in tea samples from China. Human and Ecological Risk Assessment 21:169−83

doi: 10.1080/10807039.2014.894443
[80]

Kobayash M, Ohtsuka K, Tamura Y, Tomizawa S, Kinoshita T, et al. 2013. Survey of pesticide residues in imported tea (1992.4−2010.3). Shokuhin Eiseigaku Zasshi Journal of the Food Hygienic Society of Japan 54:224−31

doi: 10.3358/shokueishi.54.224
[81]

Tang F, Chen Z, Liu G, Luo F, Lou Z. 2007. Identification of the sources and gas chromatographic determination of octachlorodipropyl ether in tea. Chinese Journal of Pesticide Science 9:153−58 (in Chinese)

[82]

Yang J, Zhu A, Xiao S, Zhang T, Wang L, et al. 2019. Anthraquinones in the aqueous extract of Cassiae Semen cause liver injury in rats through lipid metabolism disorder. Phytomedicine 64:153059

doi: 10.1016/j.phymed.2019.153059
[83]

Yu J, Zhou L, Wang X, Yang M, Sun H, et al. 2022. 9, 10-Anthraquinone contamination in tea processing using coal as heat source. Beverage Plant Research 2:1−6

doi: 10.48130/bpr-2022-0008
[84]

Zhou L, Jiang Y, Lin Q, Wang X, Zhang X, et al. 2018. Residue transfer and risk assessment of carbendazim in tea. Journal of the Science of Food and Agriculture 98:5329−34

doi: 10.1002/jsfa.9072
[85]

Yang J, Luo F, Zhou L, Sun H, Yu H, et al. 2020. Residue reduction and risk evaluation of chlorfenapyr residue in tea planting, tea processing, and tea brewing. The Science of The Total Environment 738:139613

doi: 10.1016/j.scitotenv.2020.139613
[86]

Cao P, Yang D, Zhu J, Liu Z, Jiang D, et al. 2018. Estimated assessment of cumulative dietary exposure to organophosphorus residues from tea infusion in China. Environmental Health and Preventive Medicine 23:7

doi: 10.1186/s12199-018-0696-1
[87]

Lu EH, Huang SZ, Yu TH, Chiang SY, Wu KY. 2020. Systematic probabilistic risk assessment of pesticide residues in tea leaves. Chemosphere 247:125692

doi: 10.1016/j.chemosphere.2019.125692
[88]

Xing D, Zhao T, Tan X, Liu J, Wu S, et al. 2024. Microplastics in tea from planting to the final tea product: traceability, characteristics and dietary exposure risk analysis. Food Chemistry 455:139636

doi: 10.1016/j.foodchem.2024.139636
[89]

Fard NJH, Jahedi F, Turner A. 2025. Microplastics and nanoplastics in tea: sources, characteristics and potential impacts. Food Chemistry 466:142111

doi: 10.1016/j.foodchem.2024.142111
[90]

Jayasingha H, Amarasooriya G, Rajapaksha N, Senavirathna L, Weragoda S, et al. 2025. Fluoride in tea: accumulation, dietary exposure, and future strategies for risk mitigation in food safety; a scoping review. Critical Reviews in Food Science and Nutrition 12:1−14

doi: 10.1080/10408398.2025.2516756
[91]

Narin I, Colak H, Turkoglu O, Soylak M, Dogan M. 2004. Heavy metals in black tea samples produced in Turkey. Bulletin of Environmental Contamination and Toxicology 72:844−49

doi: 10.1007/s00128-004-0321-4
[92]

Zazouli MA, Bandpei AM, Maleki A, Saberian M, Izanloo H. 2010. Determination of cadmium and lead contents in black tea and tea liquor from iran. Asian Journal of Chemistry 22:1387−93

[93]

Brzezicha-Cirocka J, Grembecka M, Szefer P. 2016. Monitoring of essential and heavy metals in green tea from different geographical origins. Environmental Monitoring and Assessment 188:183

doi: 10.1007/s10661-016-5157-y
[94]

Han W, Han G, Cai X. 2008. The current status of lead content in tea leaves and progress in control technology research. China Tea 2008:16−17 (in Chinese)

doi: 10.3969/j.issn.1000-3150.2008.03.006
[95]

Huang X, Lin C, Jiang X. 2019. Survey on the Pb content of tea in the level 1 protected area of xihu longjing tea base. China Tea Processing 2019:56−58, 67 (in Chinese)

doi: 10.15905/j.cnki.33-1157/ts.2019.01.014
[96]

Wen B, Li L, Duan Y, Zhang Y, Shen J, et al. 2018. Zn, Ni, Mn, Cr, Pb and Cu in soil-tea ecosystem: the concentrations, spatial relationship and potential control. Chemosphere 204:92−100

doi: 10.1016/j.chemosphere.2018.04.026
[97]

Hideaki M, Eiji H, Seiichiro M, Eiichi TJP, Physiology C. 1976. Localization of aluminium in tea leaves. Plant & Cell Physiology 17:627−31

doi: 10.1093/oxfordjournals.pcp.a075318
[98]

Lin T. 2016. Study on the form and bioaccessibility of aluminum in tea (Camellia Sienesis L.). Master thesis. Huazhong Agricultural University, China. pp. 5−56 https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CMFD&filename=1016155469.nh