[1]

Beckett JB. 1971. Classification of male-sterile cytoplasms in maize (Zea mays L.). Crop Science 11:724−27

doi: 10.2135/cropsci1971.0011183X001100050037xa
[2]

Tang H, Luo D, Zhou D, Zhang Q, Tian D, et al. 2014. The rice restorer Rf4 for wild-abortive cytoplasmic male sterility encodes a mitochondrial-localized PPR protein that functions in reduction of WA352 transcripts. Molecular Plant 7:1497−500

doi: 10.1093/mp/ssu047
[3]

Wang J, Wang X, Xu H, Tang H, Zhang G, et al. 2013. Structural and expressional variation analyses of mitochondrial genomes reveal candidate transcripts for the SV cytoplasmic male sterility in wheat (Triticum aestivum L.). Journal of Genetics and Genomics 408:437−39

doi: 10.1016/j.jgg.2013.03.004
[4]

Bai Z, Ding X, Zhang R, Yang Y, Wei B, et al. 2022. Transcriptome analysis reveals the genes related to pollen abortion in a cytoplasmic male-sterile soybean (Glycine max (L.) Merr.). International Journal of Molecular Sciences 23:12227

doi: 10.3390/ijms232012227
[5]

Ogura H. 1967. Studies on the new male-sterility in Japanese radish, with special reference to the utilization of this sterility towerds the practical raising of hybrid seeds. Memoirs of the Faculty of Agriculture, Kagoshima University 6:39−78

[6]

An H, Yang Z, Yi B, Wen J, Shen J, et al. 2014. Comparative transcript profiling of the fertile and sterile flower buds of pol CMS in B. napus. BMC Genomics 15:258

doi: 10.1186/1471-2164-15-258
[7]

Dong X, Kim WK, Lim YP, Kim YK, Hur Y. 2013. Ogura-CMS in Chinese cabbage (Brassica rapa ssp. pekinensis) causes delayed expression of many nuclear genes. Plant Science 199−200:7−17

doi: 10.1016/j.plantsci.2012.11.001
[8]

Zhang N, Kuang L, Yang L, Wang Y, Han F, et al. 2025. Integrated transcriptomics and metabolomics analysis reveals convergent and divergent key molecular networks of dominant genic male sterility and cytoplasmic male sterility in cabbage. International Journal of Molecular Sciences 26:1259

doi: 10.3390/ijms26031259
[9]

Yamagishi H, Bhat SR. 2014. Cytoplasmic male sterility in Brassicaceae crops. Breeding Science 64:38−47

doi: 10.1270/jsbbs.64.38
[10]

Li CW. 1981. The origin, evolution, taxonomy and hybridization of Chinese cabbage. International Symposium on Chinese Cabbage 1981:3−10

[11]

Liu W, Zhou Q, An J, Sun Y, Liu R. 2010. Variations in cadmium accumulation among Chinese cabbage cultivars and screening for Cd-safe cultivars. Journal of Hazardous Materials 173:737−43

doi: 10.1016/j.jhazmat.2009.08.147
[12]

Pokluda R. 2008. Nutritional quality of Chinese cabbage from integrated culture. Horticultural Science 35:145−50

doi: 10.17221/19/2008-hortsci
[13]

Seong GU, Hwang IW, Chung SK. 2016. Antioxidant capacities and polyphenolics of Chinese cabbage (Brassica rapa L. ssp. Pekinensis) leaves. Food Chemistry 199:612−18

doi: 10.1016/j.foodchem.2015.12.066
[14]

Singh S, Dey SS, Bhatia R, Kumar R, Behera TK. 2019. Current understanding of male sterility systems in vegetable Brassicas and their exploitation in hybrid breeding. Plant Reproduction 32:231−56

doi: 10.1007/s00497-019-00371-y
[15]

Yu D, Gu X, Zhang S, Dong S, Miao H, et al. 2021. Molecular basis of heterosis and related breeding strategies reveal its importance in vegetable breeding. Horticulture Research 8:120

doi: 10.1038/s41438-021-00552-9
[16]

Luo X, Ma C, Yi B, Tu J, Shen J, et al. 2016. Genetic distance revealed by genomic single nucleotide polymorphisms and their relationships with harvest index heterotic traits in rapeseed (Brassica napus L.). Euphytica 209:41−47

doi: 10.1007/s10681-015-1629-3
[17]

Fabian MR, Sonenberg N, Filipowicz W. 2010. Regulation of mRNA translation and stability by microRNAs. Annual Review of Biochemistry 79:351−79

doi: 10.1146/annurev-biochem-060308-103103
[18]

Zhang L, Li X, Xu L, Dan Z, Liu Y, et al. 2023. Functional validation of Medicago truncatula miR167c in regulating plant growth and flower organ development. Acta Agrestia Sinica 31:2925−37

doi: 10.11733/j.issn.1007-0435.2023.10.004
[19]

Li ZF, Zhang YC, Chen YQ. 2015. miRNAs and lncRNAs in reproductive development. Plant Science 238:46−52

doi: 10.1016/j.plantsci.2015.05.017
[20]

Song JH, Yang J, Pan F, Jin B. 2015. Differential expression of microRNAs may regulate pollen development in Brassica oleracea. Genetics and Molecular Research 14:15024−34

doi: 10.4238/2015.November.24.10
[21]

Chen J, Su P, Chen P, Li Q, Yuan X, et al. 2018. Insights into the cotton anther development through association analysis of transcriptomic and small RNA sequencing. BMC Plant Biology 181:154

doi: 10.1186/s12870-018-1376-4
[22]

Millar, A. A. and Gubler, F. 2005. The Arabidopsis GAMYB-Like genes, MYB33 and MYB65, are microRNA-regulated genes that redundantly facilitate anther development. The Plant Cell 173:705−21

doi: 10.1105/tpc.104.027920
[23]

Wang Y, Sun F, Cao H, Peng H, Ni Z, et al. 2012. TamiR159 directed wheat TaGAMYB cleavage and its involvement in anther development and heat response. PLoS One 711:e48445

doi: 10.1371/journal.pone.0048445
[24]

Lian H, Li X, Liu Z, He Y. 2013. HYL1 is required for establishment of stamen architecture with four microsporangia in Arabidopsis. Journal of Experimental Botany 64:3397−410

doi: 10.1093/jxb/ert178
[25]

Qi Y, He X, Wang XJ, Kohany O, Jurka J, et al. 2006. Distinct catalytic and non-catalytic roles of ARGONAUTE4 in RNA-directed DNA methylation. Nature 443:1008−12

doi: 10.1038/nature05198
[26]

Wei X, Zhang X, Yao Q, Yuan Y, Li X, et al. 2015. The miRNAs and their regulatory networks responsible for pollen abortion in Ogura-CMS Chinese cabbage revealed by high-throughput sequencing of miRNAs, degradomes, and transcriptomes. Frontiers in Plant Science 6:894

doi: 10.3389/fpls.2015.00894
[27]

Xie Z, Culler D, Dreyfuss BW, Kuras R, Wollman FA, et al. 1998. Genetic analysis of chloroplast c-type cytochrome assembly in Chlamydomonas reinhardtii: one chloroplast locus and at least four nuclear loci are required for heme attachment. Genetics 148:681−92

doi: 10.1093/genetics/148.2.681
[28]

Dupont CH, Rigoulet M, Aigle M, Guérin B. 1990. Isolation and genetic study of Triethyltin-resistant mutants of Saccharomyces cerevisiae. Current Genetics 17:465−72

doi: 10.1007/BF00313073
[29]

Bussereau F, Dupont CH, Boy-Marcotte E, Mallet L, Jacquet M. 1992. The CCS1 gene from Saccharomyces cerevisiae which is involved in mitochondrial functions is identified as IRA2 an attenuator of RAS1 and RAS2 gene products. Current Genetics 214:325−29

doi: 10.1007/BF00351690
[30]

Dreyfuss BW, Hamel PP, Nakamoto SS, Merchant S. 2003. Functional analysis of a divergent system II protein, Ccs1, involved in c-type cytochrome biogenesis. The Journal of Biological Chemistry 278:2604−13

doi: 10.1074/jbc.M208652200
[31]

Welchen E, Gonzalez DH. 2005. Differential expression of the Arabidopsis cytochrome c genes Cytc-1 and Cytc-2. Evidence for the involvement of TCP-domain protein-binding elements in anther- and meristem-specific expression of the Cytc-1 gene. Plant Physiology 139:88−100

doi: 10.1104/pp.105.065920
[32]

Schmitt FJ, Kreslavski VD, Zharmukhamedov SK, Friedrich T, Renger G, et al. 2015. The multiple roles of various Reactive Oxygen Species (ROS) in photosynthetic organisms. In Photosynthesis: New Approaches to the Molecular, Cellular, and Organismal Levels, ed. Allakhverdiev SI. US: Wiley. pp. 1−84 doi: 10.1002/9781119084150.ch1

[33]

Zhou LZ, Dresselhaus T. 2023. Multiple roles of ROS in flowering plant reproduction. Advances in Botanical Research 105:139−76

doi: 10.1016/bs.abr.2022.10.002
[34]

Matilla AJ. 2021. Cellular oxidative stress in programmed cell death: focusing on chloroplastic 1O2 and mitochondrial cytochrome-c release. Journal of Plant Research 134:179−94

doi: 10.1007/s10265-021-01259-7
[35]

Sun Y, Ang Y, Fu M, Bai Y, Chen J, et al. 2024. Temperature change regulates pollen fertility of a PTGMS rice line PA64S by modulating the ROS homeostasis and PCD within the tapetum. The Plant Journal 120:615−36

doi: 10.1111/tpj.17004
[36]

Ge X, Chen J, Li O, Zou M, Tao B, et al. 2025. ORF138 causes abnormal lipid metabolism in the tapetum that leads to Ogu cytoplasmic male sterility in Brassica napus. Journal of Integrative Agriculture 24:2080−95

doi: 10.1016/j.jia.2024.03.009
[37]

Grelon M, Budar F, Bonhomme S, Pelletier G. 1994. Ogura cytoplasmic male-sterility (CMS)-associated orf138 is translated into a mitochondrial membrane polypeptide in male-sterile Brassica cybrids. Molecular and General Genetics MGG 243:540−47

doi: 10.1007/BF00284202
[38]

Wang C, Lezhneva L, Arnal N, Quadrado M, Mireau H. 2021. The radish Ogura fertility restorer impedes translation elongation along its cognate CMS-causing mRNA. Proceedings of the National Academy of Sciences of the United States of America 118:e2105274118

doi: 10.1073/pnas.2105274118
[39]

Ewing B, Green P. 1998. Base-calling of automated sequencer traces using Phred. II. Error probabilities. Genome Research 8:186−94

doi: 10.1101/gr.8.3.186
[40]

Langmead B, Trapnell C, Pop M, Salzberg SL. 2009. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biology 10:R25

doi: 10.1186/gb-2009-10-3-r25
[41]

Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 15:550

doi: 10.1186/s13059-014-0550-8
[42]

Burge SW, Daub J, Eberhardt R, Tate J, Barquist L, et al. 2012. Rfam 11.0: 10 years of RNA families. Nucleic Acids Research 41:D226−D232

doi: 10.1093/nar/gks1005
[43]

Othman SMIS, Mustaffa AF, Che-Othman MH, Samad AFA, Goh HH, et al. 2023. Overview of repressive miRNA regulation by short tandem target mimic (STTM): applications and impact on plant biology. Plants 12:669

doi: 10.3390/plants12030669
[44]

Li Z, Qian W, Qiu S, Wang W, Jiang M, et al. 2024. Identification and characterization of the WOX Gene Family revealed two WUS Clade Members associated with embryo development in Cunninghamia lanceolata. Plant Physiology and Biochemistry 210:108570

doi: 10.1016/j.plaphy.2024.108570
[45]

Wei X, Zhang Y, Zhao Y, Chen W, Nath UK, et al. 2025. Mitotic pollen abnormalities linked to ogura cytoplasmic male sterility in Chinese cabbage (Brassica rapa L. ssp. pekinensis). Journal of Integrative Agriculture 24:1092−107

doi: 10.1016/j.jia.2024.07.046
[46]

Wang J, Hou X, Yang X. 2011. Identification of conserved microRNAs and their targets in Chinese cabbage (Brassica rapa subsp. pekinensis). Genome 54:1029−40

doi: 10.1139/g11-069
[47]

Wang F, Li L, Liu L, Li H, Zhang Y, et al. 2012. High-throughput sequencing discovery of conserved and novel microRNAs in Chinese cabbage (Brassica rapa L. ssp. pekinensis). Molecular Genetics and Genomics 287:555−63

doi: 10.1007/s00438-012-0699-3
[48]

Chen X. 2004. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 303:2022−25

doi: 10.1126/science.1088060
[49]

Zhang S, An X, Jiang Y, Hou Q, Ma B, et al. 2024. Plastid-localized ZmENR1/ZmHAD1 complex ensures maize pollen and anther development through regulating lipid and ROS metabolism. Nature Communications 15:10857

doi: 10.1038/s41467-024-55208-8
[50]

Hoffmann RD, Portes MT, Olsen LI, Damineli DSC, Hayashi M, et al. 2020. Plasma membrane H+-ATPases sustain pollen tube growth and fertilization. Nature Communications 11:2395

doi: 10.1038/s41467-020-16253-1
[51]

Shi C, Yang S, Cui Y, Xu Z, Zhang B, et al. 2024. Oxidative burst causes loss of tapetal Ubisch body and male sterility in rice. New Phytologist 244:10−15

doi: 10.1111/nph.20023
[52]

Xu W, Miao Y, Kong J, Lindsey K, Zhang X, et al. 2024. ROS signaling and its involvement in abiotic stress with emphasis on heat stress-driven anther sterility in plants. Crop and Environment 32:65−74

doi: 10.1016/j.crope.2023.12.002