[1]

Nagy LG, Vágvölgyi C, Papp, T. 2013. Morphological characterization of clades of the Psathyrellaceae (Agaricales) inferred from a multigene phylogeny. Mycological Progress 12:505−17

doi: 10.1007/s11557-012-0857-3
[2]

Sharp J. 2022. August Fungi Focus: Pale Brittlestem, Candolleomyces candolleanus/Psathyrella candolleana. www.woodlands.co.uk/blog/flora-and-fauna/august-fungi-focus-pale-brittlestem-candolleomyces-candolleanus-psathyrella-candolleana/

[3]

Amandeep K. 2015. A checklist of coprophilous agarics of India. Current Research in Environmental & Applied Mycology 5(4):322−48

doi: 10.5943/cream/5/4/3
[4]

Asef MR. 2007. Agaric flora of northwest forests of Iran. Proceedings of the 15th Congress of European Mycologists, Saint Petersburg, Russia, 16−21 September 2007.

[5]

Badalyan SM, Graribyan N, Sakeyan CZ. 2005. Catalogue of the Fungal Culture Collection at the Yerevan State University, Armenia. Yerevan, Armenia: Yerevan State University. www.researchgate.net/publication/236876478

[6]

Badalyan SM, Szafranski K, Hoegger PJ, Navarro-González M, Majcherczyk A, et al. 2011. New Armenian wood-associated coprinoid mushrooms: Coprinopsis strossmayeri and Coprinellus aff. radians. Diversity 3(1):136−54

doi: 10.3390/d3010136
[7]

Brazas FP, Taglinao LP, Revilla AGM, Javier RF, Tadiosa ER. 2020. Diversity and taxonomy of basidiomycetous fungi at the northeastern side of Quezon protected landscape, southern Luzon, Philippines. Journal of Agricultural Science and Technology A 10:1−11

doi: 10.17265/2161-6256/2020.01.001
[8]

Doveri F. 2011. Additions to "Fungi Fimicoli Italici": an update on the occurrence of coprophilous Basidiomycetes and Ascomycetes in Italy with new records and descriptions. Mycosphere 2(4):331−427

[9]

Gierczyk B, Kujawa A, Szczepkowski A. 2014. New to Poland species of the broadly defined genus Coprinus (Basidiomycota, Agaricomycotina). Acta Mycologica 1:159−88

doi: 10.5586/am.2014.020
[10]

Gomes ARP, Wartchow F. 2018. Notes on two coprinoid fungi (Basidiomycota, Agaricales) from the Brazilian semiarid region. Edinburgh Journal of Botany 75(3):285−95

doi: 10.1017/S0960428618000094
[11]

Halama B. 2016. Endangered, rare and little known macrofungi occurring in urban area of Wrocław. Zeszyty Naukowe Uniwersytetu Przyrodniczego We Wrocławiu - Rolnictwo 117(619):37−48

[12]

Huang M, Bau T. 2018. New findings of Coprinellus species (Psathyrellaceae, Agaricales) in China. Phytotaxa 374(2):119−28

doi: 10.11646/phytotaxa.374.2.3
[13]

Hussain S, Usman M, Afshan N, Ahmad H, Khan J, et al. 2018. The genus Coprinellus (Basidiomycota; Agaricales) in Pakistan with the description of four new species. MycoKeys 11(39):41−61

doi: 10.3897/mycokeys.39.26743
[14]

Keirle MR, Hemmes DE, Desjardin DE. 2004. Agaricales of the Hawaiian Islands. 8. Agaricaceae: Coprinus and Podaxis; Psathyrellaceae: Coprinopsis, Coprinellus and Parasola. Fungal Diversity 15(3):33−124

[15]

Mohammadi Goltapeh E. 2003. Identification of eleven Coprinus species of Iran. Rostaniha 4(1):39−56

[16]

Örstadius L, Ryberg M, Larsson E. 2015. Molecular phylogenetics and taxonomy in Psathyrellaceae (Agaricales) with focus on psathyrelloid species: introduction of three new genera and 18 new species. Mycological Progress 14:1−42

doi: 10.1007/s11557-015-1022-6
[17]

Prydiuk MP. 2014. New and rare for Ukraine species of the family Coprinaceae. 4. Genus Coprinus (section Veliformes). Ukrainian Botanical Journal 71(4):496−501

doi: 10.15407/ukrbotj71.04.496
[18]

Schafer D, Alvarado P, Smith L, Liimatainen K, Loizides M. 2022. Coprinoid Psathyrellaceae species from Cyprus: three new sabulicolous taxa from sand dunes and a four-spored form of the fimicolous species Parasola cuniculorum. Mycological Progress 21:52

doi: 10.1007/s11557-022-01803-2
[19]

Thiers HD. 1959. The agaric flora of Texas. III. new taxa of brown-and black-spored agarics. Mycologia 51(4):529−40

doi: 10.1080/00275514.1959.12024839
[20]

Tikriti AHAA, Aziz WS, Ali SH, ALSamarraie MQ, Hammadi SY. 2023. Isolation of micro-fungi from some macro-fungi soils. International Journal of Aquatic Science 14(1):567−73

[21]

Redhead SA, Vilgalys R, Moncalvo JM, Johnson J, Hopple Jr JS. 2001. Coprinus Pers. and the disposition of Coprinus species sensu lato. Taxon 50:203−41

doi: 10.2307/1224525
[22]

Kamran M, Jabeen S. 2020. Coprinellus ovatus sp. nov. from Pakistan. Mycotaxon 135:321−32

doi: 10.5248/135.321
[23]

Nagy LG, Házi J, Vágvölgyi C, Papp T. 2012. Phylogeny and species delimitation in the genus Coprinellus with special emphasis on the haired species. Mycologia 104:254−75

doi: 10.3852/11-149
[24]

Uljé CB, Keizer PJ. 2003. Coprinus parvulus, a new Coprinus from the Netherlands. Persoonia-Molecular Phylogeny and Evolution of Fungi 18(2):281−83

[25]

Seidmohammadi E, Abbasi S, Asef MR. 2018. Morphological and molecular characterization of coprinoid fungi newly recorded for the mycobiota of Iran. Cellular and Molecular Biology 64:78−83

doi: 10.14715/cmb/2017.64.15.13
[26]

Schafer DJ. 2010. Keys to sections of Parasola, Coprinellus, Coprinopsis and Coprinus in Britain. Field Mycology 11(2):44−51

doi: 10.1016/j.fldmyc.2010.04.006
[27]

Gomes ARP, Wartchow F. 2014. Coprinellus arenicola, a new species from Paraíba, Brazil. Sydowia 66(2):249−56

doi: 10.12905/0380.sydowia66(2)2014-0249
[28]

Doveri F, Sarrocco S, Pecchia S, Forti M, Vannacci G. 2011. Coprinellus mitrinodulisporus, a new species from chamois dung. Mycotaxon 114(1):351−60

doi: 10.5248/114.351
[29]

Mkrtchyan JA. 2014. Qualitative analysis of fatty acids composition in different collections of coprinoid mushrooms. Proceedings of the YSU B: Chemical and Biological Sciences 48(1):37−41

doi: 10.46991/PYSUB.2014.48.1.037
[30]

Badalyan SM. 2015. Chemical composition of mycelia of different collections of coprinoid mushrooms. Biodiversity and ecology of fungi and fungiform organisms of the Northern Eurasia. Proceeding of All-Russian Conference with International Participation, Yekaterinburg, Russia, 20−24 April 2015. pp. 297−99 www.researchgate.net/publication/277075605

[31]

Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, et al. 2012. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences of the United States of America 109:6241−46

doi: 10.1073/pnas.1117018109
[32]

Nagy LG, Walther G, Házi J, Vágvölgyi C, Papp T. 2011. Understanding the evolutionary processes of fungal fruiting bodies: correlated evolution and divergence times in the Psathyrellaceae. Systematic Biology 60(3):303−17

doi: 10.1093/sysbio/syr005
[33]

Nagy LG, Kocsubé S, Papp T, Vágvölgyi C. 2009. Phylogeny and character evolution of the coprinoid mushroom genus Parasola as inferred from LSU and ITS nrDNA sequence data. Persoonia 22:28−37

doi: 10.3767/003158509x422434
[34]

Nagy LG, Urban A, Örstadius L, Papp T, Larsson E, et al. 2010. The evolution of autodigestion in the mushroom family Psathyrellaceae (Agaricales) inferred from Maximum Likelihood and Bayesian methods. Molecular Phylogenetics and Evolution 57(3):1037−48

doi: 10.1016/j.ympev.2010.08.022
[35]

Ujlé CB, Bas C. 1991. Studies in Coprinus—II. Subsection Setulosi of section Pseudocoprinus. Persoonia-Molecular Phylogeny and Evolution of Fungi 14(3):275−339

[36]

Schünemann BLB. 2019. Fungos coprinoides do Rio Grande do Sul. Master Dissertation (in Portuguese). Federal University of Rio Grande do Sul, Brazil. https://lume.ufrgs.br/handle/10183/212885

[37]

Zhang Y, Liang J, Tadele LR, Xiang C, Mannweiler S, et al. 2024. Generation of honeysuckle-like flavor from hop (Humulus lupulus L.) fermented with Coprinellus micaceus. Innovative Food Science & Emerging Technologies 97:103815

doi: 10.1016/j.ifset.2024.103815
[38]

Aranda E, Kinne M, Kluge M, Ullrich R, Hofrichter M. 2009. Conversion of dibenzothiophene by the mushrooms Agrocybe aegerita and Coprinellus radians and their extracellular peroxygenases. Applied Microbiology and Biotechnology 82:1057−66

doi: 10.1007/s00253-008-1778-6
[39]

Naumann A, Navarro-González M, Sánchez-Hernández O, Hoegger PJ, Kües U. 2007. Correct identification of wood-inhabiting fungi by ITS analysis. Current Trends in Biotechnology and Pharmacy 1(1):41−61

[40]

Wächter D, Melzer A. 2020. Proposal for a subdivision of the family Psathyrellaceae based on a taxon-rich phylogenetic analysis with iterative multigene guide tree. Mycological Progress 19(11):1151−265

doi: 10.1007/s11557-020-01606-3
[41]

Couttolenc A, Padrón JM, Shnyreva AV, Sergeeva AI, Kurakov AV, et al. 2021. In vitro antiproliferative and antioxidant activity of three fungal strains from the White sea. Polar Science 29:100724

doi: 10.1016/j.polar.2021.100724
[42]

Kurakov AV, Bilanenko EN. 2023. Dynamics of mycobiota during composting of cow manure and straw. Eurasian Soil Science 56:453−69

doi: 10.1134/s1064229322602554
[43]

Kuragina N, Samokish V. 2020. Mycobiota in cemeterial areas of Volgograd city. Natural Systems and Resources 3:28−32

doi: 10.15688/nsr.jvolsu.2019.3.4
[44]

Novaković A, Karaman M, Milovanović I, Torbica A, Tomić J, et al. 2018. Nutritional and phenolic profile of small edible fungal species Coprinellus disseminatus (pers.) J.E. Lange 1938. Food and Feed Research 45(2):119−28

doi: 10.5937/ffr1802119n
[45]

Vukojević J, Hadžić I, Knežević A, Stajić M, Milovanović I, et al. 2016. Diversity of macromycetes in the Botanical Garden "Jevremovac" in Belgrade. Botanica Serbica 40(2):249−59

doi: 10.5281/zenodo.162226
[46]

Tešanović K, Pejin B, Šibul F, Matavulj M, Rašeta M, et al. 2017. A comparative overview of antioxidative properties and phenolic profiles of different fungal origins: fruiting bodies and submerged cultures of Coprinus comatus and Coprinellus truncorum. Journal of Food Science and Technology 54:430−38

doi: 10.1007/s13197-016-2479-2
[47]

Moreno G, Picado JA, Rosario P, Alvarado P. 2021. Contribución Al Estudio De Los Hongos Del Campus Externo De La Universidad De Alcalá. Sociedad Micologica de Madrid 45:91−113

[48]

Requejo O, Castro ML. 2015. Micobiota nas Gándaras de Budiño (Pontevedra, NO Península Ibérica) II: Agaricales. Micolucus 2:43−59

[49]

Schafer D. 2012. Coprinellus heterothrix and C. cinnamomeotinctus. Field Mycology 13(3):99−104

doi: 10.1016/j.fldmyc.2012.06.012
[50]

Yoo Y, Choi HT. 2013. Biochemical characterization of heterologously expressed chitinase 1 (Chi1) from an inky cap, coprinellus congregatus. Korean Journal of Microbiology 49(4):309−12

doi: 10.7845/kjm.2013.3081
[51]

Pejin B, Tešanović K, Jakovljević D, Kaišarević S, Šibul F, et al. 2019. The polysaccharide extracts from the fungi Coprinus comatus and Coprinellus truncorum do exhibit AChE inhibitory activity. Natural Product Research 33(5):750−54

doi: 10.1080/14786419.2017.1405417
[52]

Xiao X, Wang L, Yan F, Zhang J, Lv G, et al. 2024. Effectiveness of symbiotic fungus Coprinellus radians on seeds germination and seedlings development of Cremastra appendiculata (D. Don.) Makino (Orchidaceae). South African Journal of Botany 174:916−26

doi: 10.1016/j.sajb.2024.09.056
[53]

Gao Y, Peng S, Hang Y, Xie G, Ji N, et al. 2022. Mycorrhizal fungus Coprinellus disseminatus influences seed germination of the terrestrial orchid Cremastra appendiculata (D. Don) Makino. Scientia Horticulturae 293:110724

doi: 10.1016/j.scienta.2021.110724
[54]

Voto P. 2021. Novelties in the family Psathyrellaceae. Part V. Micologia e Vegetazione Mediterranea 35(2):149−68

[55]

Voto P. 2019. Novità nella famiglia delle Psathyrellaceae. Parte II [Novelties in the Family Psathyrellaceae. Part II]. Rivista Micologica Romana 108:127−33

[56]

Sammut C, Karich A. 2021. Coprinellus andreorum: a new species from Malta and South America. Italian Journal of Mycology 50(1):21−29

doi: 10.6092/issn.2531-7342/12445
[57]

Vesterholt J. 2012. Coprinellus P. Karst. In Funga Nordica, eds. Knudsen H, Vesterholt J. Copenhage, Denmark: Nordsvamp. pp. 662−72

[58]

Örstadius L, Nagy LG. 2021. Coprinellus dilectus versus Coprinellus aquatilis (Psathyrellaceae, Agaricales). AGARICA 42:49−54

doi: 10.5617/agarica.11155
[59]

Zhu L, Bau T. 2024. Species clarification of fairy inkcap ("Coprinellus disseminatus") in China. Mycology 15(3):424−70

doi: 10.1080/21501203.2024.2309901
[60]

Nghi DH, Kellner H, Büttner E, Huong LM, Duy LX, et al. 2021. Cellobiose dehydrogenase from the agaricomycete Coprinellus aureogranulatus and its application for the synergistic conversion of rice straw. Applied Biological Chemistry 64:66

doi: 10.1186/s13765-021-00637-y
[61]

Lopez A, Aquino JDC, Undan JQ, Waing KGD, Jerwin, et al. 2016. Molecular identification and phylogeny of some wild microscopic fungi from selected areas of Jaen, Nueva Ecija, Philippines. Advances in Environmental Biology 10(12):153−58

[62]

El Akil M, Ouazzani Touhami A, Benkirane R, Doura A. 2014. Study of some coprinoid fungi in the domanial forest of the Jerada mine site (Northeast of Morocco) whose Coprinellus bipellis and Coprinopsis strossmayeri are new to the fungal flora of Morocco. Journal of Applied Biosciences 82:7389−402 (in French)

doi: 10.4314/jab.v82i1.9
[63]

Desai WB, Peerally MA. 1990. Coprinus castaneus Berk. & Br.: an indigenous, wild edible mushroom from Mauritius. Discovery and Innovation 2:66−69

[64]

Voto P. 2019. Novelties in the family Psathyrellaceae. Part I. Rivista Micologica Romana 107:94−95

[65]

Navarro González M. 2008. Growth, fruiting body development and laccase production of selected coprini. Doctoral Dissertation. Georg-August-Universität Göttingen, Germany. doi: 10.53846/goediss-3631

[66]

Nakasaki K, Saito M, Suzuki N. 2007. Coprinellus curtus (Hitoyo-take) prevents diseases of vegetables caused by pathogenic fungi. FEMS Microbiology Letters 275(2):286−91

doi: 10.1111/j.1574-6968.2007.00899.x
[67]

Niveiro N, Albertó E. 2012. Checklist of the argentine Agaricales 2. Coprinace & Strophariacee. Mycotaxon 120:505

[68]

Voto P. 2022. Novelties in the family Psathyrellaceae. Part VII and description of Psathyrella longistriata. MycolObs - Mycological Observations 6:77−79

[69]

Yang Y, Gong X, Zhao D, Qin L. 2023. Identification of a Coprinellus strain and its application in Eucommia ulmoides gum extraction by fermenting leaves. Biotechnology Letters 45:939−53

doi: 10.1007/s10529-023-03396-6
[70]

Bakys R, Vasiliauskas A, Ihrmark K, Stenlid J, Menkis A, et al. 2010. Root rot, associated fungi and their impact on health condition of declining Fraxinus excelsior stands in Lithuania. Scandinavian Journal of Forest Research 26(2):128−35

doi: 10.1080/02827581.2010.536569
[71]

Arhipova N, Gaitnieks T, Donis J, Stenlid J, Vasaitis R. 2011. Decay, yield loss and associated fungi in stands of grey alder (Alnus incana) in Latvia. Forestry an International Journal of Forest Research 84(4):337−48

doi: 10.1093/forestry/cpr018
[72]

James TY, Srivilai P, Kües U, Vilgalys R. 2006. Evolution of the bipolar mating system of the mushroom Coprinellus disseminatus from its tetrapolar ancestors involves loss of mating-type-specific pheromone receptor function. Genetics 172(3):1877−91

doi: 10.1534/genetics.105.051128
[73]

Suhara H, Kamei I, Maekawa N, Kondo R. 2011. Biotransformation of polychlorinated dibenzo-p-dioxin by Coprinellus species. Mycoscience 52:48−52

doi: 10.1007/S10267-010-0062-7
[74]

Mohammadi Goltapeh E. 2000. A contribution to the identification of Coprinus species of Iran. Proceedings of the 14th Iranian Plant Protection Congress, Esfahan, Iran, 5–8 Sept, 2000. 2: 372

[75]

Putra IP, Thamrin JAD. 2021. Coprinellus sect. disseminati: source of gastropod mycophagy in bogor-Indonesia. Biota: Jurnal Ilmiah Ilmu-Ilmu Hayati 6:147−54

doi: 10.24002/biota.v6i3.3316
[76]

Singh S, Dutt D, Tyagi CH, Upadhyaya JS. 2011. Bio-conventional bleaching of wheat straw soda-AQ pulp with crude xylanases from SH-1 NTCC-1163 and SH-2 NTCC-1164 strains of Coprinellus disseminatus to mitigate AOX generation. New Biotechnology 28(1):47−57

doi: 10.1016/j.nbt.2010.06.005
[77]

De Leon A, Pagaduan MA, Panto B, Kalaw S. 2021. Species listing of macrofungi found in paracelis mountain province, Philippines. CLSU International Journal of Science and Technology 5(2):22−40

doi: 10.22137/ijst.2021.v5n2.03
[78]

Oliveira LMN, Caires CS. 2024. Fungos Macroscópicos de Vitória da Conquista, Bahia, Brasil. Seminário de Iniciaçáo Científica e Tecnológica 3:1−5

[79]

Ko KS, Lim YW, Kim YH, Jung HS. 2001. Phylogeographic divergences of nuclear ITS sequences in Coprinus species sensu lato. Mycological Research 105(12):1519−26

doi: 10.1017/s0953756201005184
[80]

Lopez S. 2018. Species abundance of fungi is greater in landslide areas compared to undisturbed areas of the forest in Monteverde, puntarenas, costa rica. UC Merced Undergraduate Research Journal 10(2):1−18

doi: 10.5070/m4102038938
[81]

Cáceres O, Kirschner R, Piepenbring M, Schöfer H, Gené J. 2006. Hormographiella Verticillata and an Ozonium stage as anamorphs of Coprinellus domesticus. Antonie Van Leeuwenhoek 89(1):79−90

doi: 10.1007/s10482-005-9011-4
[82]

Saber M. 1994. Contribution to the knowledge of Agaricaceae (Agaricales) collected in Iran. Fifth International Mycological Congress 14-21

[83]

Pauline NA, Ahmed O, Saifeddine EK, Anas N, Amina OT, Allal D, Koutoua A. 2022. Study of eight species of the genus Coprinus in the forest area of daloa (central west, Côte d'Ivoire). Scholars Journal of Agriculture and Veterinary Sciences 9(11):171−77

doi: 10.36347/sjavs.2022.v09i11.004
[84]

Yagame T, Funabiki E, Yukawa T, Nagasawa E. 2018. Identification of mycobionts in an achlorophyllous orchid, Cremastra aphylla (Orchidaceae), based on molecular analysis and basidioma morphology. Mycoscience 59(1):18−23

doi: 10.1016/j.myc.2017.08.001
[85]

Badalyan SM, Navarro-González M, Kües U. 2011. Taxonomic significance of anamorphic characteristics in the life cycle of coprinoid mushrooms. Proceedings of VII International Conference on Mushroom Biology and Mushroom Products, Arcachon, France, 4−7 October 2011. pp. 140−54 www.researchgate.net/profile/Susanna-Badalyan/publication/229163985

[86]

Thorn RG, Reddy CA, Harris D, Paul EA. 1996. Isolation of saprophytic basidiomycetes from soil. Applied and Environmental Microbiology 62(11):4288−92

doi: 10.1128/aem.62.11.4288-4292.1996
[87]

De Silva NI, Maharachchikumbura SSN, Thambugala KM, Bhat DJ, Karunarathna SC, et al. 2021. Morpho-molecular taxonomic studies reveal a high number of endophytic fungi from Magnolia candolli and M. garrettii in China and Thailand. Mycosphere 12(1):163−237

doi: 10.5943/mycosphere/12/1/3
[88]

Oliver JP, Perkins J, Jellison J. 2010. Effect of fungal pretreatment of wood on successional decay by several inky cap mushroom species. International Biodeterioration & Biodegradation 64(7):646−51

doi: 10.1016/j.ibiod.2010.07.004
[89]

Güler P, Türkoğlu A. 2015. Screening of morphological and anatomical features of Coprinellus micaceus Bull. Fr. from Turkey. Hacettepe Journal of Biology and Chemistry 43(2):115−18

doi: 10.15671/HJBC.20154312551
[90]

Sergentani AG, Gonou-Zagou Z, Kapsanaki-Gotsi E, Hatzinikolaou DG. 2016. Lignocellulose degradation potential of basidiomycota from Thrace (NE Greece). International Biodeterioration & Biodegradation 114:268−77

doi: 10.1016/j.ibiod.2016.07.004
[91]

Nguyen TK, Lee MW, Yoon KN, Kim HY, Jin G, et al. 2014. In vitro antioxidant, anti-diabetic, anti-cholinesterase, tyrosinase and nitric oxide inhibitory potential of fruiting bodies of Coprinellus micaceus. Journal of Mushrooms 12(4):330−40

doi: 10.14480/jm.2014.12.4.330
[92]

Wright R, Woof K. 2024. The genome sequence of the glistening inkcap, Coprinellus micaceus Coprinellus; Coprinellus micaceus ((Bull.) Vilgalys, Hopple & Jacq. Johnson, 2001). Wellcome Open Research 9:677

doi: 10.12688/wellcomeopenres.23349.1
[93]

Sandulescu EB, Sfetcu EL, Stavrescu-Bedivan M. 2022. Macromycetes recorded in the campus of the University of Agronomic Sciences and Veterinary Medicine of Bucharest: preliminary data. Scientific Papers-Series A: Agronomy 65(2):419−24

[94]

Voto P. 2021. Novelties in the Family Psathyrellaceae. Part VI. Mycological Observations 1:17

[95]

Raza M, Cai L, Abbasi MW, Hafeez R, Tariq M, et al. 2022. The first updated checklist of novel fungi in Pakistan (1947–2021). MycoAsia 1(1):1−72

doi: 10.59265/mycoasia.2022-03
[96]

Lee M, Hsiao C, Ju Y, Kuo Y, Lin R, Lee T. 2016. Terpenoids from the Fermented Broths of Coprinellus radians. Natural Product Communications 11(9):1229−30

[97]

Zíbarová L, Kolényová M, Tejklová T, Zehnálek P, Antonín V, et al. 2024. Červený seznam makromycetů ČR [Red list of fungi (macromycetes) of the Czech Republic]. Příroda 46:48−192 (in Czech)

[98]

Melo RFR, Dos Santos Chikowski R, Miller AN, Maia LC. 2016. Coprophilous Agaricales (Agaricomycetes, Basidiomycota) from Brazil. Phytotaxa 266(1):1

doi: 10.11646/phytotaxa.266.1.1
[99]

Sharma VP, Kumar S, Kamal S. 2015. Coprinellus and Coprinopsis: aggressive competitors of button mushroom during rainy season cultivation. International Research Journal of Natural and Applied Sciences 2:155−63

[100]

Uljé CB, Verbeken A. 2002. A new species in Coprinus subsection Setulosi. Persoonia-Molecular Phylogeny and Evolution of Fungi 18(1):143−45

[101]

Lim H, Choi HT. 2009. Enhanced expression of chitinase during the autolysis of mushroom in Coprinellus congregatus. The Journal of Microbiology 47(2):225−28

doi: 10.1007/s12275-008-0247-3
[102]

Lange M, Smith AH. 1953. The Coprinus ephemerus group. Mycologia 45(5):747−80

doi: 10.1080/00275514.1953.12024313
[103]

Házi J, Nagy LG, Vágvölgyi C, Papp T. 2011. Coprinellus radicellus, a new species with northern distribution. Mycological Progress 10:363−71

doi: 10.1007/s11557-010-0709-y
[104]

Kour H, Kour D, Kour S, Singh S, Jawad Hashmi SA, et al. 2022. Bioactive compounds from mushrooms: emerging bioresources of food and nutraceuticals. Food Bioscience 50:102124

doi: 10.1016/j.fbio.2022.102124
[105]

Dulay RMR, Batangan JN, Kalaw SP, De Leon AM, Cabrera EC, et al. 2023. Records of wild mushrooms in the Philippines: a review. Journal of Applied Biology and Biotechnology 11(2):11−32

doi: 10.7324/jabb.2023.110202
[106]

Novakovic A, Karaman M, Kaisarevic S, Belovic M, Radusin T, et al. 2016. Coprinellus disseminatus (pers.) J.E. Lange 1938: in vitro antioxidant and antiproliferative effects. Food and Feed research 43(2):93−101

doi: 10.5937/FFR1602093N
[107]

Chi MJ, Dong XY, Wei WK, Li XM, Li XJ. 2023. Bisabolane and drimane sesquiterpenes from the fungus Coprinellus sp. Phytochemistry Letters 55:30−33

doi: 10.1016/j.phytol.2023.03.006
[108]

Atlagić K, Živić M, Jakovljević D, Filipović JM, Šibul F, et al. 2023. Cytotoxic activity of the crude polysaccharides/exopolysaccharides of Coprinus comatus and Coprinellus truncorum. Natural Product Research 37(11):1838−43

doi: 10.1080/14786419.2022.2118743
[109]

Eguchi F, Dulay RMR, Kalaw SP, Yoshimoto H, Miyazawa N, et al. 2014. Antihypertensive activities of a Philippine wild edible white rot fungus (Lentinus sajor-caju) in spontaneously hypertensive rats as models. Advances in Environmental Biology 8(24):74−81

[110]

Chen HP, Liu JK. 2017. Secondary metabolites from higher fungi. In Progress in the Chemistry of Organic Natural Products, eds. Kinghorn A, Falk H, Gibbons S, Kobayashi J. vol. 106. Cham: Springer. pp. 1−201 doi: 10.1007/978-3-319-59542-9_1

[111]

Ghora M, Bhowmik A, Ghosh S. 2025. Medicinal value of basidiomycota fungi. In Medicinal plants and their uses: basic to field, eds. Das D, Ghosh P. India: Shashwat Publication.

[112]

Spremo NR, Tesanović KD, Rakić MS, Janjušević LN, Ignjatov MV, et al. 2017. Antifungal activity of macrofungi extracts on phytopathogenic fungal strains of genera Fusarium sp. and Alternaria sp. Zbornik Matice srpske za prirodne nauke 2017(133):231−40

doi: 10.2298/ZMSPN1733231S