| [1] |
Horstman A, Willemsen V, Boutilier K, Heidstra R. 2014. AINTEGUMENTA-LIKE proteins: hubs in a plethora of networks. |
| [2] |
Scheres B, Krizek BA. 2018. Coordination of growth in root and shoot apices by AIL/PLT transcription factors. |
| [3] |
Kim S, Soltis PS, Wall K, Soltis DE. 2006. Phylogeny and domain evolution in the APETALA2-like gene family. |
| [4] |
Elliott RC, Betzner AS, Huttner E, Oakes MP, Tucker WQ, et al. 1996. AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. |
| [5] |
Klucher KM, Chow H, Reiser L, Fischer RL. 1996. The AINTEGUMENTA gene of Arabidopsis required for ovule and female gametophyte development is related to the floral homeotic gene APETALA2. |
| [6] |
Shi C, Zhao Z, Zhong Y, Qiao Y, Zhang L, et al. 2025. Reprogramming of microspore fate via BBM-BAR1 for highly efficient in vivo haploid induction. |
| [7] |
Echevarría C, Desvoyes B, Marconi M, Franco-Zorrilla JM, Lee L, et al. 2025. Stem cell regulators drive a G1 duration gradient during plant root development. |
| [8] |
Galinha C, Hofhuis H, Luijten M, Willemsen V, Blilou I, et al. 2007. PLETHORA proteins as dose-dependent master regulators of Arabidopsis root development. |
| [9] |
Miao L, Li SZ, Shi AK, Li YS, He CX, et al. 2021. Genome-wide analysis of the AINTEGUMENTA-like (AIL) transcription factor gene family in pumpkin (Cucurbita moschata Duch.) and CmoANT1.2 response in graft union healing. |
| [10] |
Han X, Liu K, Yuan G, He S, Cong P, et al. 2022. Genome-wide identification and characterization of AINTEGUMENTA-LIKE (AIL) family genes in apple (Malus domestica Borkh.). |
| [11] |
Wang X, Zhang J, Zhang J, Zhou C, Han L. 2022. Genome-wide characterization of AINTEGUMENTA-LIKE family in Medicago truncatula reveals the significant roles of AINTEGUMENTAs in leaf growth. |
| [12] |
Shen S, Sun F, Zhu M, Chen S, Guan M, et al. 2020. Genome-wide identification AINTEGUMENTA-like (AIL) genes in Brassica species and expression patterns during reproductive development in Brassica napus L. |
| [13] |
Liu WY, Lin HH, Yu CP, Chang CK, Chen HJ, et al. 2020. Maize ANT1 modulates vascular development, chloroplast development, photosynthesis, and plant growth. |
| [14] |
Manchado-Rojo M, Weiss J, Egea-Cortines M. 2014. Validation of Aintegumenta as a gene to modify floral size in ornamental plants. |
| [15] |
Ding Q, Cui B, Li J, Li H, Zhang Y, et al. 2018. Ectopic expression of a Brassica rapa AINTEGUMENTA gene (BrANT-1) increases organ size and stomatal density in Arabidopsis. |
| [16] |
Kuluev B, Avalbaev A, Nurgaleeva E, Knyazev A, Nikonorov Y, et al. 2015. Role of AINTEGUMENTA-like gene NtANTL in the regulation of tobacco organ growth. |
| [17] |
Zhao Y, Ma R, Xu D, Bi H, Xia Z, et al. 2019. Genome-wide identification and analysis of the AP2 transcription factor gene family in wheat (Triticum aestivum L.). |
| [18] |
Nole-Wilson S, Krizek BA. 2006. AINTEGUMENTA contributes to organ polarity and regulates growth of lateral organs in combination with YABBY genes. |
| [19] |
Krizek BA. 2009. AINTEGUMENTA and AINTEGUMENTA-LIKE6 act redundantly to regulate Arabidopsis floral growth and patterning. |
| [20] |
Krizek BA, Bantle AT, Heflin JM, Han H, Freese NH, et al. 2021. AINTEGUMENTA and AINTEGUMENTA-LIKE6 directly regulate floral homeotic, growth, and vascular development genes in young Arabidopsis flowers. |
| [21] |
Mudunkothge JS, Krizek BA. 2012. Three Arabidopsis AIL/PLT genes act in combination to regulate shoot apical meristem function. |
| [22] |
Bui LT, Pandzic D, Youngstrom CE, Wallace S, Irish EE, et al. 2017. A fern AINTEGUMENTA gene mirrors BABY BOOM in promoting apogamy in Ceratopteris richardii. |
| [23] |
El Ouakfaoui S, Schnell J, Abdeen A, Colville A, Labbé H, et al. 2010. Control of somatic embryogenesis and embryo development by AP2 transcription factors. |
| [24] |
Florez SL, Erwin RL, Maximova SN, Guiltinan MJ, Curtis WR. 2015. Enhanced somatic embryogenesis in Theobroma cacao using the homologous BABY BOOM transcription factor. |
| [25] |
Chen B, Maas L, Figueiredo D, Zhong Y, Reis R, et al. 2022. BABY BOOM regulates early embryo and endosperm development. |
| [26] |
Tsuwamoto R, Yokoi S, Takahata Y. 2010. Arabidopsis EMBRYOMAKER encoding an AP2 domain transcription factor plays a key role in developmental change from vegetative to embryonic phase. |
| [27] |
Heidmann I, de Lange B, Lambalk J, Angenent GC, Boutilier K. 2011. Efficient sweet pepper transformation mediated by the BABY BOOM transcription factor. |
| [28] |
Lowe K, Wu E, Wang N, Hoerster G, Hastings C, et al. 2016. Morphogenic regulators Baby boom and Wuschel improve monocot transformation. |
| [29] |
Johnson K, Cao Chu U, Anthony G, Wu E, Che P, et al. 2023. Rapid and highly efficient morphogenic gene-mediated hexaploid wheat transformation. |
| [30] |
Hofhuis H, Laskowski M, Du Y, Prasad K, Grigg S, et al. 2013. Phyllotaxis and rhizotaxis in Arabidopsis are modified by three PLETHORA transcription factors. |
| [31] |
Guo J, Dong T, Huang T, Du Y, Feng Z, et al. 2025. AINTEGUMENTA-LIKE 5 promotes root and leaf growth by regulating CYCLIN D6;1 in Rehmannia glutinosa. |
| [32] |
Liu S, Fu X, Wang Y, Du X, Luo L, et al. 2025. The auxin-PLETHORA 5 module regulates wood fibre development in Populus tomentosa. |
| [33] |
Boualem A, Troadec C, Camps C, Lemhemdi A, Morin H, et al. 2015. A cucurbit androecy gene reveals how unisexual flowers develop and dioecy emerges. |
| [34] |
Zhang H, Li S, Yang L, Cai G, Chen H, et al. 2021. Gain-of-function of the 1-aminocyclopropane-1-carboxylate synthase gene ACS1G induces female flower development in cucumber gynoecy. |
| [35] |
Li Z, Han Y, Niu H, Wang Y, Jiang B, et al. 2020. Gynoecy instability in cucumber (Cucumis sativus L.) is due to unequal crossover at the copy number variation-dependent Femaleness (F) locus. |
| [36] |
Che G, Zhang X. 2019. Molecular basis of cucumber fruit domestication. |
| [37] |
Pan Y, Wang Y, McGregor C, Liu S, Luan F, et al. 2020. Genetic architecture of fruit size and shape variation in cucurbits: a comparative perspective. |
| [38] |
Lv J, Qi J, Shi Q, Shen D, Zhang S, et al. 2012. Genetic diversity and population structure of cucumber (Cucumis sativus L.). |
| [39] |
Lu S, Wang J, Chitsaz F, Derbyshire MK, Geer RC, et al. 2020. CDD/SPARCLE: the conserved domain database in 2020. |
| [40] |
Letunic I, Khedkar S, Bork P. 2021. SMART: recent updates, new developments and status in 2020. |
| [41] |
Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, et al. 2003. ExPASy: the proteomics server for in-depth protein knowledge and analysis. |
| [42] |
Wang Y, Li J, Paterson AH. 2013. MCScanX-transposed: detecting transposed gene duplications based on multiple colinearity scans. |
| [43] |
Hu B, Jin J, Guo AY, Zhang H, Luo J, et al. 2015. GSDS 2.0: an upgraded gene feature visualization server. |
| [44] |
Bailey TL, Johnson J, Grant CE, Noble WS. 2015. The MEME suite. |
| [45] |
Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ. 2009. Jalview Version 2—a multiple sequence alignment editor and analysis workbench. |
| [46] |
Birchler JA, Yang H. 2022. The multiple fates of gene duplications: Deletion, hypofunctionalization, subfunctionalization, neofunctionalization, dosage balance constraints, and neutral variation. |
| [47] |
Hu R, Qi G, Kong Y, Kong D, Gao Q, et al. 2010. Comprehensive analysis of comprehensive analysis of NAC domain transcription factor gene family in Populus trichocarpa. |
| [48] |
Ando K, Carr KM, Grumet R. 2012. Transcriptome analyses of early cucumber fruit growth identifies distinct gene modules associated with phases of development. |
| [49] |
Yang XY, Wang Y, Jiang WJ, Liu XL, Zhang XM, et al. 2013. Characterization and expression profiling of cucumber kinesin genes during early fruit development: revealing the roles of kinesins in exponential cell production and enlargement in cucumber fruit. |
| [50] |
Liu L, White MJ, MacRae TH. 1999. Transcription factors and their genes in higher plants. |
| [51] |
Chen C, Yin S, Liu X, Liu B, Yang S, et al. 2016. The WD-repeat protein CsTTG1 regulates fruit wart formation through interaction with the homeodomain-leucine zipper I protein mict. |
| [52] |
Meng LS, Wang YB, Yao SQ, Liu A. 2015. Arabidopsis AINTEGUMENTA mediates salt tolerance by trans-repressing SCABP8. Journal of Cell Science 128:2919−27 |
| [53] |
Meng LS, Wang ZB, Yao SQ, Liu A. 2015. The ARF2-ANT-COR15A gene cascade regulates ABA–signaling–mediated resistance of large seeds to drought in Arabidopsis. |