[1]

Horstman A, Willemsen V, Boutilier K, Heidstra R. 2014. AINTEGUMENTA-LIKE proteins: hubs in a plethora of networks. Trends in Plant Science 19:146−57

doi: 10.1016/j.tplants.2013.10.010
[2]

Scheres B, Krizek BA. 2018. Coordination of growth in root and shoot apices by AIL/PLT transcription factors. Current Opinion in Plant Biology 41:95−101

doi: 10.1016/j.pbi.2017.10.002
[3]

Kim S, Soltis PS, Wall K, Soltis DE. 2006. Phylogeny and domain evolution in the APETALA2-like gene family. Molecular Biology and Evolution 23:107−20

doi: 10.1093/molbev/msj014
[4]

Elliott RC, Betzner AS, Huttner E, Oakes MP, Tucker WQ, et al. 1996. AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. The Plant Cell 8:155−68

doi: 10.1105/tpc.8.2.155
[5]

Klucher KM, Chow H, Reiser L, Fischer RL. 1996. The AINTEGUMENTA gene of Arabidopsis required for ovule and female gametophyte development is related to the floral homeotic gene APETALA2. The Plant Cell 8:137−53

doi: 10.1105/tpc.8.2.137
[6]

Shi C, Zhao Z, Zhong Y, Qiao Y, Zhang L, et al. 2025. Reprogramming of microspore fate via BBM-BAR1 for highly efficient in vivo haploid induction. Cell 188:6109−6120.e15

doi: 10.1016/j.cell.2025.08.014
[7]

Echevarría C, Desvoyes B, Marconi M, Franco-Zorrilla JM, Lee L, et al. 2025. Stem cell regulators drive a G1 duration gradient during plant root development. Nature Plants 11:2145−55

doi: 10.1038/s41477-025-02109-3
[8]

Galinha C, Hofhuis H, Luijten M, Willemsen V, Blilou I, et al. 2007. PLETHORA proteins as dose-dependent master regulators of Arabidopsis root development. Nature 449:1053−57

doi: 10.1038/nature06206
[9]

Miao L, Li SZ, Shi AK, Li YS, He CX, et al. 2021. Genome-wide analysis of the AINTEGUMENTA-like (AIL) transcription factor gene family in pumpkin (Cucurbita moschata Duch.) and CmoANT1.2 response in graft union healing. Plant Physiology and Biochemistry 162:706−15

doi: 10.1016/j.plaphy.2021.03.036
[10]

Han X, Liu K, Yuan G, He S, Cong P, et al. 2022. Genome-wide identification and characterization of AINTEGUMENTA-LIKE (AIL) family genes in apple (Malus domestica Borkh.). Genomics 114:110313

doi: 10.1016/j.ygeno.2022.110313
[11]

Wang X, Zhang J, Zhang J, Zhou C, Han L. 2022. Genome-wide characterization of AINTEGUMENTA-LIKE family in Medicago truncatula reveals the significant roles of AINTEGUMENTAs in leaf growth. Frontiers in Plant Science 13:1050462

doi: 10.3389/fpls.2022.1050462
[12]

Shen S, Sun F, Zhu M, Chen S, Guan M, et al. 2020. Genome-wide identification AINTEGUMENTA-like (AIL) genes in Brassica species and expression patterns during reproductive development in Brassica napus L. PLoS One 15:e0234411

doi: 10.1371/journal.pone.0234411
[13]

Liu WY, Lin HH, Yu CP, Chang CK, Chen HJ, et al. 2020. Maize ANT1 modulates vascular development, chloroplast development, photosynthesis, and plant growth. Proceedings of the National Academy of Sciences of the United States of America 117:21747−56

doi: 10.1073/pnas.2012245117
[14]

Manchado-Rojo M, Weiss J, Egea-Cortines M. 2014. Validation of Aintegumenta as a gene to modify floral size in ornamental plants. Plant Biotechnology Journal 12:1053−65

doi: 10.1111/pbi.12212
[15]

Ding Q, Cui B, Li J, Li H, Zhang Y, et al. 2018. Ectopic expression of a Brassica rapa AINTEGUMENTA gene (BrANT-1) increases organ size and stomatal density in Arabidopsis. Scientific Reports 8:10528

doi: 10.1038/s41598-018-28606-4
[16]

Kuluev B, Avalbaev A, Nurgaleeva E, Knyazev A, Nikonorov Y, et al. 2015. Role of AINTEGUMENTA-like gene NtANTL in the regulation of tobacco organ growth. Journal of Plant Physiology 189:11−23

doi: 10.1016/j.jplph.2015.08.009
[17]

Zhao Y, Ma R, Xu D, Bi H, Xia Z, et al. 2019. Genome-wide identification and analysis of the AP2 transcription factor gene family in wheat (Triticum aestivum L.). Frontiers in Plant Science 10:1286

doi: 10.3389/fpls.2019.01286
[18]

Nole-Wilson S, Krizek BA. 2006. AINTEGUMENTA contributes to organ polarity and regulates growth of lateral organs in combination with YABBY genes. Plant Physiology 141:977−87

doi: 10.1104/pp.106.076604
[19]

Krizek BA. 2009. AINTEGUMENTA and AINTEGUMENTA-LIKE6 act redundantly to regulate Arabidopsis floral growth and patterning. Plant Physiology 150:1916−29

doi: 10.1104/pp.109.141119
[20]

Krizek BA, Bantle AT, Heflin JM, Han H, Freese NH, et al. 2021. AINTEGUMENTA and AINTEGUMENTA-LIKE6 directly regulate floral homeotic, growth, and vascular development genes in young Arabidopsis flowers. Journal of Experimental Botany 72:5478−93

doi: 10.1093/jxb/erab223
[21]

Mudunkothge JS, Krizek BA. 2012. Three Arabidopsis AIL/PLT genes act in combination to regulate shoot apical meristem function. The Plant Journal 71:108−21

doi: 10.1111/j.1365-313X.2012.04975.x
[22]

Bui LT, Pandzic D, Youngstrom CE, Wallace S, Irish EE, et al. 2017. A fern AINTEGUMENTA gene mirrors BABY BOOM in promoting apogamy in Ceratopteris richardii. The Plant Journal 90:122−32

doi: 10.1111/tpj.13479
[23]

El Ouakfaoui S, Schnell J, Abdeen A, Colville A, Labbé H, et al. 2010. Control of somatic embryogenesis and embryo development by AP2 transcription factors. Plant Molecular Biology 74:313−26

doi: 10.1007/s11103-010-9674-8
[24]

Florez SL, Erwin RL, Maximova SN, Guiltinan MJ, Curtis WR. 2015. Enhanced somatic embryogenesis in Theobroma cacao using the homologous BABY BOOM transcription factor. BMC Plant Biology 15:121

doi: 10.1186/s12870-015-0479-4
[25]

Chen B, Maas L, Figueiredo D, Zhong Y, Reis R, et al. 2022. BABY BOOM regulates early embryo and endosperm development. Proceedings of the National Academy of Sciences 119:e2201761119

doi: 10.1073/pnas.2201761119
[26]

Tsuwamoto R, Yokoi S, Takahata Y. 2010. Arabidopsis EMBRYOMAKER encoding an AP2 domain transcription factor plays a key role in developmental change from vegetative to embryonic phase. Plant Molecular Biology 73:481−92

doi: 10.1007/s11103-010-9634-3
[27]

Heidmann I, de Lange B, Lambalk J, Angenent GC, Boutilier K. 2011. Efficient sweet pepper transformation mediated by the BABY BOOM transcription factor. Plant Cell Reports 30:1107−15

doi: 10.1007/s00299-011-1018-x
[28]

Lowe K, Wu E, Wang N, Hoerster G, Hastings C, et al. 2016. Morphogenic regulators Baby boom and Wuschel improve monocot transformation. The Plant Cell 28:1998−2015

doi: 10.1105/tpc.16.00124
[29]

Johnson K, Cao Chu U, Anthony G, Wu E, Che P, et al. 2023. Rapid and highly efficient morphogenic gene-mediated hexaploid wheat transformation. Frontiers in Plant Science 14:1151762

doi: 10.3389/fpls.2023.1151762
[30]

Hofhuis H, Laskowski M, Du Y, Prasad K, Grigg S, et al. 2013. Phyllotaxis and rhizotaxis in Arabidopsis are modified by three PLETHORA transcription factors. Current Biology 23:956−62

doi: 10.1016/j.cub.2013.04.048
[31]

Guo J, Dong T, Huang T, Du Y, Feng Z, et al. 2025. AINTEGUMENTA-LIKE 5 promotes root and leaf growth by regulating CYCLIN D6;1 in Rehmannia glutinosa. International Journal of Biological Macromolecules 317:144857

doi: 10.1016/j.ijbiomac.2025.144857
[32]

Liu S, Fu X, Wang Y, Du X, Luo L, et al. 2025. The auxin-PLETHORA 5 module regulates wood fibre development in Populus tomentosa. Nature Plants 11:580−94

doi: 10.1038/s41477-025-01931-z
[33]

Boualem A, Troadec C, Camps C, Lemhemdi A, Morin H, et al. 2015. A cucurbit androecy gene reveals how unisexual flowers develop and dioecy emerges. Science 350:688−91

doi: 10.1126/science.aac8370
[34]

Zhang H, Li S, Yang L, Cai G, Chen H, et al. 2021. Gain-of-function of the 1-aminocyclopropane-1-carboxylate synthase gene ACS1G induces female flower development in cucumber gynoecy. The Plant Cell 33:306−21

doi: 10.1093/plcell/koaa018
[35]

Li Z, Han Y, Niu H, Wang Y, Jiang B, et al. 2020. Gynoecy instability in cucumber (Cucumis sativus L.) is due to unequal crossover at the copy number variation-dependent Femaleness (F) locus. Horticulture Research 7:32

doi: 10.1038/s41438-020-0251-2
[36]

Che G, Zhang X. 2019. Molecular basis of cucumber fruit domestication. Current Opinion in Plant Biology 47:38−46

doi: 10.1016/j.pbi.2018.08.006
[37]

Pan Y, Wang Y, McGregor C, Liu S, Luan F, et al. 2020. Genetic architecture of fruit size and shape variation in cucurbits: a comparative perspective. Theoretical and Applied Genetics 133:1−21

doi: 10.1007/s00122-019-03481-3
[38]

Lv J, Qi J, Shi Q, Shen D, Zhang S, et al. 2012. Genetic diversity and population structure of cucumber (Cucumis sativus L.). PLoS One 7:e46919

doi: 10.1371/journal.pone.0046919
[39]

Lu S, Wang J, Chitsaz F, Derbyshire MK, Geer RC, et al. 2020. CDD/SPARCLE: the conserved domain database in 2020. Nucleic Acids Research 48:D265−D268

doi: 10.1093/nar/gkz991
[40]

Letunic I, Khedkar S, Bork P. 2021. SMART: recent updates, new developments and status in 2020. Nucleic Acids Research 49:D458−D460

doi: 10.1093/nar/gkaa937
[41]

Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, et al. 2003. ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Research 31:3784−88

doi: 10.1093/nar/gkg563
[42]

Wang Y, Li J, Paterson AH. 2013. MCScanX-transposed: detecting transposed gene duplications based on multiple colinearity scans. Bioinformatics 29:1458−60

doi: 10.1093/bioinformatics/btt150
[43]

Hu B, Jin J, Guo AY, Zhang H, Luo J, et al. 2015. GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics 31:1296−97

doi: 10.1093/bioinformatics/btu817
[44]

Bailey TL, Johnson J, Grant CE, Noble WS. 2015. The MEME suite. Nucleic Acids Research 43:W39−W49

doi: 10.1093/nar/gkv416
[45]

Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ. 2009. Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25:1189−91

doi: 10.1093/bioinformatics/btp033
[46]

Birchler JA, Yang H. 2022. The multiple fates of gene duplications: Deletion, hypofunctionalization, subfunctionalization, neofunctionalization, dosage balance constraints, and neutral variation. The Plant Cell 34:2466−74

doi: 10.1093/plcell/koac076
[47]

Hu R, Qi G, Kong Y, Kong D, Gao Q, et al. 2010. Comprehensive analysis of comprehensive analysis of NAC domain transcription factor gene family in Populus trichocarpa. BMC Plant Biology 10:145

doi: 10.1186/1471-2229-10-145
[48]

Ando K, Carr KM, Grumet R. 2012. Transcriptome analyses of early cucumber fruit growth identifies distinct gene modules associated with phases of development. BMC Genomics 13:518

doi: 10.1186/1471-2164-13-518
[49]

Yang XY, Wang Y, Jiang WJ, Liu XL, Zhang XM, et al. 2013. Characterization and expression profiling of cucumber kinesin genes during early fruit development: revealing the roles of kinesins in exponential cell production and enlargement in cucumber fruit. Journal of Experimental Botany 64:4541−57

doi: 10.1093/jxb/ert269
[50]

Liu L, White MJ, MacRae TH. 1999. Transcription factors and their genes in higher plants. European Journal of Biochemistry 262:247−57

doi: 10.1046/j.1432-1327.1999.00349.x
[51]

Chen C, Yin S, Liu X, Liu B, Yang S, et al. 2016. The WD-repeat protein CsTTG1 regulates fruit wart formation through interaction with the homeodomain-leucine zipper I protein mict. Plant Physiology 171:1156−68

doi: 10.1104/pp.16.00112
[52]

Meng LS, Wang YB, Yao SQ, Liu A. 2015. Arabidopsis AINTEGUMENTA mediates salt tolerance by trans-repressing SCABP8. Journal of Cell Science 128:2919−27

[53]

Meng LS, Wang ZB, Yao SQ, Liu A. 2015. The ARF2-ANT-COR15A gene cascade regulates ABA–signaling–mediated resistance of large seeds to drought in Arabidopsis. Journal of Cell Science 128:3922−32

doi: 10.1242/jcs.171207