[1]

Pellegrini AF, Harden J, Georgiou K, Hemes KS, Malhotra A, et al. 2022. Fire effects on the persistence of soil organic matter and long-term carbon storage. Nature Geoscience 15(1):5−13

doi: 10.1038/s41561-021-00867-1
[2]

Witzgall K, Vidal A, Schubert DI, Höschen C, Schweizer SA, et al. 2021. Particulate organic matter as a functional soil component for persistent soil organic carbon. Nature Communications 12(1):4115

doi: 10.1038/s41467-021-24192-8
[3]

Zhu Y, Zhang M, Han X, Lu X, Chen X, et al. 2024. Evaluation of the soil aggregate stability under long term manure and chemical fertilizer applications: insights from organic carbon and humic acid structure in aggregates. Agriculture, Ecosystems & Environment 376:109217

doi: 10.1016/j.agee.2024.109217
[4]

Xu Q, Zhang H, Vandenkoornhuyse P, Guo S, Kuzyakov Y, et al. 2024. Carbon starvation raises capacities in bacterial antibiotic resistance and viral auxiliary carbon metabolism in soils. Proceedings of the National Academy of Sciences of the United States of America 121(16):e2318160121

doi: 10.1073/pnas.2318160121
[5]

Liu QH, Yuan L, Li ZH, Leung KMY, Sheng GP. 2024. Natural organic matter enhances natural transformation of extracellular antibiotic resistance genes in sunlit water. Environmental Science & Technology 58(40):17990−17998

doi: 10.1021/acs.est.4c08211
[6]

Liu ZL, Wang YF, Zhu D, Quintela-Baluja M, Graham DW, et al. 2024. Increased transmission of antibiotic resistance occurs in a soil food chain under pesticide stress. Environmental Science & Technology 58(50):21989−22001

doi: 10.1021/acs.est.4c07822
[7]

Wang L, Lin D, Xiao KQ, Ma LJ, Fu YM, et al. 2024. Soil viral–host interactions regulate microplastic-dependent carbon storage. Proceedings of the National Academy of Sciences of the United States of America 121(45):e2413245121

doi: 10.1073/pnas.2413245121
[8]

Zhu D, Liu SY, Sun MM, Yi XY, Duan GL, et al. 2024. Adaptive expression of phage auxiliary metabolic genes in paddy soils and their contribution toward global carbon sequestration. Proceedings of the National Academy of Sciences of the United States of America 121(49):e2419798121

doi: 10.1073/pnas.2419798121
[9]

Samir A, Ashour FH, Abdel Hakim AA, Bassyouni M. 2022. Recent advances in biodegradable polymers for sustainable applications. npj Materials Degradation 6(1):68

doi: 10.1038/s41529-022-00277-7
[10]

Wang S, Bai X, Zhang X, Reis S, Chen D, et al. 2021. Urbanization can benefit agricultural production with large-scale farming in China. Nature Food 2(3):183−191

doi: 10.1038/s43016-021-00228-6
[11]

Shinde R, Shahi DK, Mahapatra P, Naik SK, Thombare N, et al. 2022. Potential of lignocellulose degrading microorganisms for agricultural residue decomposition in soil: a review. Journal of Environmental Management 320:115843

doi: 10.1016/j.jenvman.2022.115843
[12]

Yang F, Tang C, Antonietti M. 2021. Natural and artificial humic substances to manage minerals, ions, water, and soil microorganisms. Chemical Society Reviews 50(10):6221−6239

doi: 10.1039/d0cs01363c
[13]

Qian F, Zhu X, Liu Y, Shi Q, Wu L, et al. 2018. Influences of temperature and metal on subcritical hydrothermal liquefaction of hyperaccumulator: implications for the recycling of hazardous hyperaccumulators. Environmental Science & Technology 52(4):2225−2234

doi: 10.1021/acs.est.7b03756
[14]

Hyatt D, Chen GL, LoCascio PF, Land ML, Larimer FW, et al. 2010. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11:119

doi: 10.1186/1471-2105-11-119
[15]

De Bernardini N, Basile A, Zampieri G, Kovalovszki A, De Diego Diaz B, et al. 2022. Integrating metagenomic binning with flux balance analysis to unravel syntrophies in anaerobic CO2 methanation. Microbiome 10(1):117

doi: 10.1186/s40168-022-01311-1
[16]

Luo XQ, Wang P, Li JL, Ahmad M, Duan L, et al. 2022. Viral community-wide auxiliary metabolic genes differ by lifestyles, habitats, and hosts. Microbiome 10(1):190

doi: 10.1186/s40168-022-01384-y
[17]

Cheng R, Li X, Jiang L, Gong L, Geslin C, et al. 2022. Virus diversity and interactions with hosts in deep-sea hydrothermal vents. Microbiome 10(1):235

doi: 10.1186/s40168-022-01441-6
[18]

Kieft K, Zhou Z, Anantharaman K. 2020. VIBRANT: automated recovery, annotation and curation of microbial viruses, and evaluation of viral community function from genomic sequences. Microbiome 8:90

doi: 10.1186/s40168-020-00867-0
[19]

Coutinho FH, Cabello-Yeves PJ, Gonzalez-Serrano R, Rosselli R, López-Pérez M, et al. 2020. New viral biogeochemical roles revealed through metagenomic analysis of Lake Baikal. Microbiome 8:163

doi: 10.1186/s40168-020-00936-4
[20]

Chen X, Yang B, Zhou H, Boguta P, Fu X, et al. 2024. Iron oxyhydroxide catalyzes production of artificial humic substances from waste biomass. Journal of Environmental Management 352:120152

doi: 10.1016/j.jenvman.2024.120152
[21]

Slak J, Pomeroy B, Kostyniuk A, Grilc M, Likozar B. 2022. A review of bio-refining process intensification in catalytic conversion reactions, separations and purifications of hydroxymethylfurfural (HMF) and furfural. Chemical Engineering Journal 429:132325

doi: 10.1016/j.cej.2021.132325
[22]

Gollakota ARK, Kishore N, Gu S. 2018. A review on hydrothermal liquefaction of biomass. Renewable and Sustainable Energy Reviews 81:1378−1392

doi: 10.1016/j.rser.2017.05.178
[23]

Xu YH, Li MF. 2021. Hydrothermal liquefaction of lignocellulose for value-added products: mechanism, parameter and production application. Bioresource Technology 342:126035

doi: 10.1016/j.biortech.2021.126035
[24]

Li WT, Xu ZX, Li AM, Wu W, Zhou Q, et al. 2013. HPLC/HPSEC-FLD with multi-excitation/emission scan for EEM interpretation and dissolved organic matter analysis. Water Research 47(3):1246−1256

doi: 10.1016/j.watres.2012.11.040
[25]

Lai CY, Dong QY, Chen JX, Zhu QS, Yang X, et al. 2018. Role of extracellular polymeric substances in a methane based membrane biofilm reactor reducing vanadate. Environmental Science & Technology 52(18):10680−10688

doi: 10.1021/acs.est.8b02374
[26]

Bahureksa W, Tfaily MM, Boiteau RM, Young RB, Logan MN, et al. 2021. Soil organic matter characterization by fourier transform ion cyclotron resonance mass spectrometry (FTICR MS): a critical review of sample preparation, analysis, and data interpretation. Environmental Science & Technology 55(14):9637−9656

doi: 10.1021/acs.est.1c01135
[27]

Hao B, Xu D, Jiang G, Sabri TA, Jing Z, et al. 2021. Chemical reactions in the hydrothermal liquefaction of biomass and in the catalytic hydrogenation upgrading of biocrude. Green Chemistry 23(4):1562−1583

doi: 10.1039/D0GC02893B
[28]

Zhang B, Biswal BK, Zhang J, Balasubramanian R. 2023. Hydrothermal treatment of biomass feedstocks for sustainable production of chemicals, fuels, and materials: progress and perspectives. Chemical Reviews 123(11):7193−7294

doi: 10.1021/acs.chemrev.2c00673
[29]

Hou Y, Zhang Y, Li L, Li X, Zhu C, et al. 2025. Recycling hydrothermal liquefaction by-products derived from biowaste as artificial humic acids to immobilize diethyl phthalate. Journal of Environmental Chemical Engineering 13(3):116786

doi: 10.1016/j.jece.2025.116786
[30]

Nardi S, Schiavon M, Francioso O. 2021. Chemical structure and biological activity of humic substances define their role as plant growth promoters. Molecules 26(8):2256

doi: 10.3390/molecules26082256
[31]

Ma Y, Woolf D, Fan M, Qiao L, Li R, et al. 2023. Global crop production increase by soil organic carbon. Nature Geoscience 16(12):1159−1165

doi: 10.1038/s41561-023-01302-3
[32]

Wang C, Kuzyakov Y. 2024. Mechanisms and implications of bacterial–fungal competition for soil resources. The ISME Journal 18(1):wrae073

doi: 10.1093/ismejo/wrae073
[33]

Geng A, Jin M, Li N, Zhu D, Xie R, et al. 2021. New insights into the co-occurrences of glycoside hydrolase genes among prokaryotic genomes through network analysis. Microorganisms 9(2):427

doi: 10.3390/microorganisms9020427
[34]

Chen Z, Rao Y, Usman M, Chen H, Białowiec A, et al. 2021. Anaerobic fermentation of hydrothermal liquefaction wastewater of dewatered sewage sludge for volatile fatty acids production with focuses on the degradation of organic components and microbial community compositions. Science of The Total Environment 777:146077

doi: 10.1016/j.scitotenv.2021.146077
[35]

Chen W, Jiang X, Yang Q. 2020. Glycoside hydrolase family 18 chitinases: the known and the unknown. Biotechnology Advances 43:107553

doi: 10.1016/j.biotechadv.2020.107553
[36]

Ma X, Zhang X, Xia J, Sun H, Zhang X, et al. 2021. Phenolic compounds promote the horizontal transfer of antibiotic resistance genes in activated sludge. Science of The Total Environment 800:149549

doi: 10.1016/j.scitotenv.2021.149549
[37]

Xu J, Ding D, Fan Y, Chen R, Xia Y, et al. 2025. The overlooked risk of horizontal transfer of plasmid-borne antibiotic resistance genes induced by synthetic phenolic antioxidants. Journal of Hazardous Materials 488:137459

doi: 10.1016/j.jhazmat.2025.137459