[1]

Bhattarai S, Wang H, Poudel HP, Biligetu B. 2024. Evaluating effectiveness of clonal plant selection of alfalfa (Medicago sativa L.) and sainfoin (Onobrychis viciifolia Scop.) in mixtures: mean performance and stability in a multi-environment trial. Plant Breeding 143:713−24

doi: 10.1111/pbr.13194
[2]

Zhu H, Liu H, Liu Q, Wu Y, Xu Y, et al. 2025. Identification and response to abiotic stress of the alfalfa serine carboxypeptidase-like protein gene family. Grass Research 5:e022

doi: 10.48130/grares-0025-0019
[3]

Shen C, Du H, Chen Z, Lu H, Zhu F, et al. 2020. The chromosome-level genome sequence of the autotetraploid alfalfa and resequencing of core germplasms provide genomic resources for alfalfa research. Molecular Plant 13:1250−61

doi: 10.1016/j.molp.2020.07.003
[4]

Yang J, Yi J, Ma S, Wang Y, Song J, et al. 2024. Integrated physiological, metabolomic, and transcriptomic analyses elucidate the regulation mechanisms of lignin synthesis under osmotic stress in alfalfa leaf (Medicago sativa L.). BMC Genomics 25:174

doi: 10.1186/s12864-024-10039-1
[5]

Wan W, Liu Q, Li K, Zhao K, Qi F, et al. 2025. Nitrogen fertilizer application for improving the biomass, quality, and nitrogen fixation of alfalfa (Medicago sativa L.) at different growth stages in a saline-alkali soil. PeerJ 13:e18796

doi: 10.7717/peerj.18796
[6]

Wang W, Tian T, Li MY, Wang BZ, Mei FJ, et al. 2024. Carbon and nitrogen stoichiometry across plant−soil system accounts for the degradation of multi-year alfalfa grassland. Frontiers in Plant Science 15:1400261

doi: 10.3389/fpls.2024.1400261
[7]

Annicchiarico P, Barrett B, Brummer EC, Julier B, Marshall AH. 2015. Achievements and challenges in improving temperate perennial forage legumes. Critical Reviews in Plant Sciences 34:327−80

doi: 10.1080/07352689.2014.898462
[8]

Meuwissen THE, Hayes BJ, Goddard ME. 2001. Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819−29

doi: 10.1093/genetics/157.4.1819
[9]

He F, Zhang F, Jiang X, Long R, Wang Z, et al. 2022. A genome-wide association study coupled with a transcriptomic analysis reveals the genetic loci and candidate genes governing the flowering time in alfalfa (Medicago sativa L.). Frontiers in Plant Science 13:913947

doi: 10.3389/fpls.2022.913947
[10]

Fu W, da Silva Linge C, Lawton JM, Gasic K. 2022. Feasibility of genomic prediction for brown rot (Monilinia spp.) resistance in peach. Fruit Research 2:2

doi: 10.48130/frures-2022-0002
[11]

Xie C, Xu S. 1998. Efficiency of multistage marker-assisted selection in the improvement of multiple quantitative traits. Heredity 80:489−98

doi: 10.1046/j.1365-2540.1998.00308.x
[12]

Zhang D, Yang F, Li J, Liu Z, Han Y, et al. 2025. Progress and perspectives on genomic selection models for crop breeding. Technology in Agronomy 5:e006

doi: 10.48130/tia-0025-0002
[13]

Medina CA, Hansen J, Crawford J, Viands D, Sapkota M, et al. 2025. Genome-wide association and genomic prediction of alfalfa (Medicago sativa L.) biomass yield under drought stress. International Journal of Molecular Sciences 26:608

doi: 10.3390/ijms26020608
[14]

Medina CA, Hawkins C, Liu XP, Peel M, Yu LX. 2020. Genome-wide association and prediction of traits related to salt tolerance in autotetraploid alfalfa (Medicago sativa L.). International Journal of Molecular Sciences 21:3361

doi: 10.3390/ijms21093361
[15]

Nazzicari N, Franguelli N, Ferrari B, Pecetti L, Annicchiarico P. 2024. The effect of genome parametrization and SNP marker subsetting on genomic selection in autotetraploid alfalfa. Genes 15:449

doi: 10.3390/genes15040449
[16]

Xu M, Jiang X, He F, Sod B, Yang T, et al. 2023. Genome-wide association study (GWAS) identifies key candidate genes associated with leaf size in alfalfa (Medicago sativa L.). Agriculture 13:2237

doi: 10.3390/agriculture13122237
[17]

Zhang F, Kang J, Long R, Li M, Sun Y, et al. 2022. Application of machine learning to explore the genomic prediction accuracy of fall dormancy in autotetraploid alfalfa. Horticulture Research 10:uhac225

doi: 10.1093/hr/uhac225
[18]

Medina CA, Kaur H, Ray I, Yu LX. 2021. Strategies to increase prediction accuracy in genomic selection of complex traits in alfalfa (Medicago sativa L.). Cells 10:3372

doi: 10.3390/cells10123372
[19]

Annicchiarico P, Nazzicari N, Brummer EC. 2016. Alfalfa genomic selection: challenges, strategies, transnational cooperation. In Breeding in a World of Scarcity, eds. Roldán-Ruiz I, Baert J, Reheul D. Cham, Switzerland: Springer. pp.145−49 doi: 10.1007/978-3-319-28932-8_22

[20]

McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, et al. 2010. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research 20:1297−303

doi: 10.1101/gr.107524.110
[21]

Chen H, Zeng Y, Yang Y, Huang L, Tang B, et al. 2020. Allele-aware chromosome-level genome assembly and efficient transgene-free genome editing for the autotetraploid cultivated alfalfa. Nature Communications 11:2494

doi: 10.1038/s41467-020-16338-x
[22]

VanRaden PM. 2008. Efficient methods to compute genomic predictions. Journal of Dairy Science 91:4414−23

doi: 10.3168/jds.2007-0980
[23]

Endelman JB. 2011. Ridge regression and other kernels for genomic selection with R package rrBLUP. The Plant Genome 4:250−55

doi: 10.3835/plantgenome2011.08.0024
[24]

Habier D, Fernando RL, Kizilkaya K, Garrick DJ. 2011. Extension of the Bayesian alphabet for genomic selection. BMC Bioinformatics 12:186

doi: 10.1186/1471-2105-12-186
[25]

de los Campos G, Naya H, Gianola D, Crossa J, Legarra A, et al. 2009. Predicting quantitative traits with regression models for dense molecular markers and pedigree. Genetics 182:375−85

doi: 10.1534/genetics.109.101501
[26]

Park T, Casella G. 2008. The Bayesian Lasso. Journal of the American Statistical Association 103:681−86

doi: 10.1198/016214508000000337
[27]

Pérez P, de los Campos G. 2014. Genome-wide regression and prediction with the BGLR statistical package. Genetics 198:483−95

doi: 10.1534/genetics.114.164442
[28]

Zhang Z, Liu J, Ding X, Bijma P, de Koning DJ, et al. 2010. Best linear unbiased prediction of genomic breeding values using a trait-specific marker-derived relationship matrix. PLoS One 5:e12648

doi: 10.1371/journal.pone.0012648
[29]

He X, Zhang F, He F, Shen Y, Yu LX, et al. 2022. Accuracy of genomic selection for alfalfa biomass yield in two full-sib populations. Frontiers in Plant Science 13:1037272

doi: 10.3389/fpls.2022.1037272
[30]

Wang H, Bai Y, Biligetu B. 2024. Effects of SNP marker density and training population size on prediction accuracy in alfalfa (Medicago sativa L.) genomic selection. The Plant Genome 17:e20431

doi: 10.1002/tpg2.20431
[31]

Jiang X, Zeng X, Xu M, Li M, Zhang F, et al. 2025. The whole-genome dissection of root system architecture provides new insights for the genetic improvement of alfalfa (Medicago sativa L.). Horticulture Research 12:uhae271

doi: 10.1093/hr/uhae271
[32]

Li XH, Wei YL, Acharya A, Hansen JL, Crawford JL, et al. 2015. Genomic prediction of biomass yield in two selection cycles of a tetraploid alfalfa breeding population. Plant Genome 8:eplantgenome2014.12.0090

doi: 10.3835/plantgenome2014.12.0090
[33]

Sipowicz P, Andrade MHML, Filho CCF, Benevenuto J, Muñoz P, et al. 2025. Optimization of high-throughput marker systems for genomic prediction in alfalfa family bulks. The Plant Genome 18:e20526

doi: 10.1002/tpg2.20526
[34]

de Bem Oliveira I, Amadeu RR, Ferrão LFV, Muñoz PR. 2020. Optimizing whole-genomic prediction for autotetraploid blueberry breeding. Heredity 125:437−48

doi: 10.1038/s41437-020-00357-x
[35]

Hong MJ, Kim JB, Seo YW, Kim DY. 2021. Regulation of glycosylphosphatidylinositol-anchored protein (GPI-AP) expression by F-box/LRR-repeat (FBXL) protein in wheat (Triticum aestivum L.). Plants 10:1606

doi: 10.3390/plants10081606
[36]

Kane EI, Spratt DE. 2021. Structural insights into ankyrin repeat-containing proteins and their influence in ubiquitylation. International Journal of Molecular Sciences 22:609

doi: 10.3390/ijms22020609
[37]

Mano Y, Nemoto K. 2012. The pathway of auxin biosynthesis in plants. Journal of Experimental Botany 63:2853−72

doi: 10.1093/jxb/ers091
[38]

Qu L, Wei Z, Chen HH, Liu T, Liao K, et al. 2021. Plant casein kinases phosphorylate and destabilize a cyclin-dependent kinase inhibitor to promote cell division. Plant Physiology 187:917−30

doi: 10.1093/plphys/kiab284
[39]

Yan H, Guo H, Xu W, Dai C, Kimani W, et al. 2023. GWAS-assisted genomic prediction of cadmium accumulation in maize kernel with machine learning and linear statistical methods. Journal of Hazardous Materials 441:129929

doi: 10.1016/j.jhazmat.2022.129929
[40]

Spindel JE, Begum H, Akdemir D, Collard B, Redoña E, et al. 2016. Genome-wide prediction models that incorporate de novo GWAS are a powerful new tool for tropical rice improvement. Heredity 116:395−408

doi: 10.1038/hdy.2015.113
[41]

Alemu A, Brazauskas G, Gaikpa DS, Henriksson T, Islamov B, et al. 2021. Genome-wide association analysis and genomic prediction for adult-plant resistance to Septoria tritici blotch and powdery mildew in winter wheat. Frontiers in Genetics 12:661742

doi: 10.3389/fgene.2021.661742
[42]

Yu LX, Liu X, Boge W, Liu XP. 2016. Genome-wide association study identifies loci for salt tolerance during germination in autotetraploid alfalfa (Medicago sativa L.) using genotyping-by-sequencing. Frontiers in Plant Science 7:956

doi: 10.3389/fpls.2016.00956
[43]

Singer WM, Shea Z, Yu D, Huang H, Rouf Mian MA, et al. 2022. Genome-wide association study and genomic selection for proteinogenic methionine in soybean seeds. Frontiers in Plant Science 13:859109

doi: 10.3389/fpls.2022.859109