| [1] |
Bhattarai S, Wang H, Poudel HP, Biligetu B. 2024. Evaluating effectiveness of clonal plant selection of alfalfa (Medicago sativa L.) and sainfoin (Onobrychis viciifolia Scop.) in mixtures: mean performance and stability in a multi-environment trial. |
| [2] |
Zhu H, Liu H, Liu Q, Wu Y, Xu Y, et al. 2025. Identification and response to abiotic stress of the alfalfa serine carboxypeptidase-like protein gene family. |
| [3] |
Shen C, Du H, Chen Z, Lu H, Zhu F, et al. 2020. The chromosome-level genome sequence of the autotetraploid alfalfa and resequencing of core germplasms provide genomic resources for alfalfa research. |
| [4] |
Yang J, Yi J, Ma S, Wang Y, Song J, et al. 2024. Integrated physiological, metabolomic, and transcriptomic analyses elucidate the regulation mechanisms of lignin synthesis under osmotic stress in alfalfa leaf (Medicago sativa L.). |
| [5] |
Wan W, Liu Q, Li K, Zhao K, Qi F, et al. 2025. Nitrogen fertilizer application for improving the biomass, quality, and nitrogen fixation of alfalfa (Medicago sativa L.) at different growth stages in a saline-alkali soil. |
| [6] |
Wang W, Tian T, Li MY, Wang BZ, Mei FJ, et al. 2024. Carbon and nitrogen stoichiometry across plant−soil system accounts for the degradation of multi-year alfalfa grassland. |
| [7] |
Annicchiarico P, Barrett B, Brummer EC, Julier B, Marshall AH. 2015. Achievements and challenges in improving temperate perennial forage legumes. |
| [8] |
Meuwissen THE, Hayes BJ, Goddard ME. 2001. Prediction of total genetic value using genome-wide dense marker maps. |
| [9] |
He F, Zhang F, Jiang X, Long R, Wang Z, et al. 2022. A genome-wide association study coupled with a transcriptomic analysis reveals the genetic loci and candidate genes governing the flowering time in alfalfa (Medicago sativa L.). |
| [10] |
Fu W, da Silva Linge C, Lawton JM, Gasic K. 2022. Feasibility of genomic prediction for brown rot (Monilinia spp.) resistance in peach. |
| [11] |
Xie C, Xu S. 1998. Efficiency of multistage marker-assisted selection in the improvement of multiple quantitative traits. |
| [12] |
Zhang D, Yang F, Li J, Liu Z, Han Y, et al. 2025. Progress and perspectives on genomic selection models for crop breeding. |
| [13] |
Medina CA, Hansen J, Crawford J, Viands D, Sapkota M, et al. 2025. Genome-wide association and genomic prediction of alfalfa (Medicago sativa L.) biomass yield under drought stress. |
| [14] |
Medina CA, Hawkins C, Liu XP, Peel M, Yu LX. 2020. Genome-wide association and prediction of traits related to salt tolerance in autotetraploid alfalfa (Medicago sativa L.). |
| [15] |
Nazzicari N, Franguelli N, Ferrari B, Pecetti L, Annicchiarico P. 2024. The effect of genome parametrization and SNP marker subsetting on genomic selection in autotetraploid alfalfa. |
| [16] |
Xu M, Jiang X, He F, Sod B, Yang T, et al. 2023. Genome-wide association study (GWAS) identifies key candidate genes associated with leaf size in alfalfa (Medicago sativa L.). |
| [17] |
Zhang F, Kang J, Long R, Li M, Sun Y, et al. 2022. Application of machine learning to explore the genomic prediction accuracy of fall dormancy in autotetraploid alfalfa. |
| [18] |
Medina CA, Kaur H, Ray I, Yu LX. 2021. Strategies to increase prediction accuracy in genomic selection of complex traits in alfalfa (Medicago sativa L.). |
| [19] |
Annicchiarico P, Nazzicari N, Brummer EC. 2016. Alfalfa genomic selection: challenges, strategies, transnational cooperation. In Breeding in a World of Scarcity, eds. Roldán-Ruiz I, Baert J, Reheul D. Cham, Switzerland: Springer. pp.145−49 doi: 10.1007/978-3-319-28932-8_22 |
| [20] |
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, et al. 2010. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. |
| [21] |
Chen H, Zeng Y, Yang Y, Huang L, Tang B, et al. 2020. Allele-aware chromosome-level genome assembly and efficient transgene-free genome editing for the autotetraploid cultivated alfalfa. |
| [22] |
VanRaden PM. 2008. Efficient methods to compute genomic predictions. |
| [23] |
Endelman JB. 2011. Ridge regression and other kernels for genomic selection with R package rrBLUP. |
| [24] |
Habier D, Fernando RL, Kizilkaya K, Garrick DJ. 2011. Extension of the Bayesian alphabet for genomic selection. |
| [25] |
de los Campos G, Naya H, Gianola D, Crossa J, Legarra A, et al. 2009. Predicting quantitative traits with regression models for dense molecular markers and pedigree. |
| [26] |
Park T, Casella G. 2008. The Bayesian Lasso. |
| [27] |
Pérez P, de los Campos G. 2014. Genome-wide regression and prediction with the BGLR statistical package. |
| [28] |
Zhang Z, Liu J, Ding X, Bijma P, de Koning DJ, et al. 2010. Best linear unbiased prediction of genomic breeding values using a trait-specific marker-derived relationship matrix. |
| [29] |
He X, Zhang F, He F, Shen Y, Yu LX, et al. 2022. Accuracy of genomic selection for alfalfa biomass yield in two full-sib populations. |
| [30] |
Wang H, Bai Y, Biligetu B. 2024. Effects of SNP marker density and training population size on prediction accuracy in alfalfa (Medicago sativa L.) genomic selection. |
| [31] |
Jiang X, Zeng X, Xu M, Li M, Zhang F, et al. 2025. The whole-genome dissection of root system architecture provides new insights for the genetic improvement of alfalfa (Medicago sativa L.). |
| [32] |
Li XH, Wei YL, Acharya A, Hansen JL, Crawford JL, et al. 2015. Genomic prediction of biomass yield in two selection cycles of a tetraploid alfalfa breeding population. |
| [33] |
Sipowicz P, Andrade MHML, Filho CCF, Benevenuto J, Muñoz P, et al. 2025. Optimization of high-throughput marker systems for genomic prediction in alfalfa family bulks. |
| [34] |
de Bem Oliveira I, Amadeu RR, Ferrão LFV, Muñoz PR. 2020. Optimizing whole-genomic prediction for autotetraploid blueberry breeding. |
| [35] |
Hong MJ, Kim JB, Seo YW, Kim DY. 2021. Regulation of glycosylphosphatidylinositol-anchored protein (GPI-AP) expression by F-box/LRR-repeat (FBXL) protein in wheat (Triticum aestivum L.). |
| [36] |
Kane EI, Spratt DE. 2021. Structural insights into ankyrin repeat-containing proteins and their influence in ubiquitylation. |
| [37] |
Mano Y, Nemoto K. 2012. The pathway of auxin biosynthesis in plants. |
| [38] |
Qu L, Wei Z, Chen HH, Liu T, Liao K, et al. 2021. Plant casein kinases phosphorylate and destabilize a cyclin-dependent kinase inhibitor to promote cell division. |
| [39] |
Yan H, Guo H, Xu W, Dai C, Kimani W, et al. 2023. GWAS-assisted genomic prediction of cadmium accumulation in maize kernel with machine learning and linear statistical methods. |
| [40] |
Spindel JE, Begum H, Akdemir D, Collard B, Redoña E, et al. 2016. Genome-wide prediction models that incorporate de novo GWAS are a powerful new tool for tropical rice improvement. |
| [41] |
Alemu A, Brazauskas G, Gaikpa DS, Henriksson T, Islamov B, et al. 2021. Genome-wide association analysis and genomic prediction for adult-plant resistance to Septoria tritici blotch and powdery mildew in winter wheat. |
| [42] |
Yu LX, Liu X, Boge W, Liu XP. 2016. Genome-wide association study identifies loci for salt tolerance during germination in autotetraploid alfalfa (Medicago sativa L.) using genotyping-by-sequencing. |
| [43] |
Singer WM, Shea Z, Yu D, Huang H, Rouf Mian MA, et al. 2022. Genome-wide association study and genomic selection for proteinogenic methionine in soybean seeds. |