[1]

Pelzel HR, Nickells RW. 2011. A role for epigenetic changes in the development of retinal neurodegenerative conditions. Journal of Ocular Biology, Diseases, and Informatics 4:104−10

doi: 10.1007/s12177-012-9079-9
[2]

Deichmann U. 2024. Two pioneers of epigenetics: their different paths to chromatin research and DNA methylation, and general reflections on epigenetics. Frontiers in Epigenetics and Epigenomics 1:1334556

doi: 10.3389/freae.2023.1334556
[3]

Gayon J. 2016. From Mendel to epigenetics: history of genetics. Comptes Rendus Biologies 339:225−30

doi: 10.1016/j.crvi.2016.05.009
[4]

Cheedipudi S, Genolet O, Dobreva G. 2014. Epigenetic inheritance of cell fates during embryonic development. Frontiers in Genetics 5:19

doi: 10.3389/fgene.2014.00019
[5]

Kong Y, Cao L, Deikus G, Fan Y, Mead EA, et al. 2022. Critical assessment of DNA adenine methylation in eukaryotes using quantitative deconvolution. Science 375:515−22

doi: 10.1126/science.abe7489
[6]

Walker J, Zhang J, Liu Y, Xu S, Yu Y, et al. 2025. Extensive N4 cytosine methylation is essential for Marchantia sperm function. Cell 188:2890−2906.e14

doi: 10.1016/j.cell.2025.03.014
[7]

Bird AP, Taggart MH, Smith BA. 1979. Methylated and unmethylated DNA compartments in the sea urchin genome. Cell 17:889−901

doi: 10.1016/0092-8674(79)90329-5
[8]

Zhang H, Lang Z, Zhu JK. 2018. Dynamics and function of DNA methylation in plants. Nature Reviews Molecular Cell Biology 19:489−506

doi: 10.1038/s41580-018-0016-z
[9]

Law JA, Jacobsen SE. 2010. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nature Reviews Genetics 11:204−20

doi: 10.1038/nrg2719
[10]

Tang K, Zhu X, Xie S, Lang Z, Zhu JK. 2024. Transgenerational increases in DNA methylation in Arabidopsis plants defective in active DNA demethylation. Proceedings of the National Academy of Sciences of the United States of America 121:e2320468121

doi: 10.1073/pnas.2320468121
[11]

Liu R, Wu J, Guo H, Yao W, Li S, et al. 2023. Post-translational modifications of histones: mechanisms, biological functions, and therapeutic targets. MedComm 4:e292

doi: 10.1002/mco2.292
[12]

Shim S, Lee HG, Seo PJ. 2021. MET1-dependent DNA methylation represses light signaling and influences plant regeneration in Arabidopsis. Molecules and Cells 44:746−57

doi: 10.14348/molcells.2021.0160
[13]

He L, Huang H, Bradai M, Zhao C, You Y, et al. 2022. DNA methylation-free Arabidopsis reveals crucial roles of DNA methylation in regulating gene expression and development. Nature Communications 13:1335

doi: 10.1038/s41467-022-28940-2
[14]

Hu D, Yu Y, Wang C, Long Y, Liu Y, et al. 2022. Erratum for: Multiplex CRISPR-Cas9 editing of DNA methyltransferases in rice uncovers a class of non-CG methylation specific for GC-rich regions. The Plant Cell 34:1416

doi: 10.1093/plcell/koab256
[15]

Wang Z, Xia A, Wang Q, Cui Z, Lu M, et al. 2024. Natural polymorphisms in ZMET2 encoding a DNA methyltransferase modulate the number of husk layers in maize. Plant Physiology 195:2129−42

doi: 10.1093/plphys/kiae113
[16]

Kim S, Park JS, Lee J, Lee KK, Park OS, et al. 2021. The DME demethylase regulates sporophyte gene expression, cell proliferation, differentiation, and meristem resurrection. Proceedings of the National Academy of Sciences of the United States of America 118:e2026806118

doi: 10.1073/pnas.2026806118
[17]

Jiang T, Li L, Hu Q, Kuang X, Zhang L, et al. 2025. The DNA methylation–demethylation balance prevents development of multiple megaspore mother cells in Arabidopsis. The Plant Cell 37:koaf023

doi: 10.1093/plcell/koaf023
[18]

Song Y, Tang Y, Liu L, Xu Y, Wang T. 2022. The methyl-CpG-binding domain family member PEM1 is essential for Ubisch body formation and pollen exine development in rice. The Plant Journal 111:1283−95

doi: 10.1111/tpj.15887
[19]

Higo A, Saihara N, Miura F, Higashi Y, Yamada M, et al. 2020. DNA methylation is reconFig.d at the onset of reproduction in rice shoot apical meristem. Nature Communications 11:4079

doi: 10.1038/s41467-020-17963-2
[20]

Wang MY, Liow P, Guzman MIT, Qi J. 2022. Exploring methods of targeting histone methyltransferases and their applications in cancer therapeutics. ACS Chemical Biology 17:744−55

doi: 10.1021/acschembio.2c00062
[21]

Cheng J, Niu Q, Zhang B, Chen K, Yang R, et al. 2018. Downregulation of RdDM during strawberry fruit ripening. Genome Biology 19:212

doi: 10.1186/s13059-018-1587-x
[22]

Huang H, Liu R, Niu Q, Tang K, Zhang B, et al. 2019. Global increase in DNA methylation during orange fruit development and ripening. Proceedings of the National Academy of Sciences of the United States of America 116:1430−36

doi: 10.1073/pnas.1815441116
[23]

Wang H, Zhu Y, Yuan P, Song S, Dong T, et al. 2021. Response of wheat DREB transcription factor to osmotic stress based on DNA methylation. International Journal of Molecular Sciences 22:7670

doi: 10.3390/ijms22147670
[24]

Yin M, Wang S, Wang Y, Wei R, Liang Y, et al. 2024. Impact of abiotic stress on rice and the role of DNA methylation in stress response mechanisms. Plants 13:2700

doi: 10.3390/plants13192700
[25]

Song X, Tang S, Liu H, Meng Y, Luo H, et al. 2025. Inheritance of acquired adaptive cold tolerance in rice through DNA methylation. Cell 188:4213−4224. e12

doi: 10.1016/j.cell.2025.04.036
[26]

Ma Y, Min L, Wang M, Wang C, Zhao Y, et al. 2018. Disrupted genome methylation in response to high temperature has distinct affects on microspore abortion and anther indehiscence. The Plant Cell 30:1387−403

doi: 10.1105/tpc.18.00074
[27]

Halter T, Wang J, Amesefe D, Lastrucci E, Charvin M, et al. 2021. The Arabidopsis active demethylase ROS1 cis-regulates defence genes by erasing DNA methylation at promoter-regulatory regions. eLife 10:e62994

doi: 10.7554/elife.62994
[28]

Loughland I, Little A, Seebacher F. 2021. DNA methyltransferase 3a mediates developmental thermal plasticity. BMC Biology 19:11

doi: 10.1186/s12915-020-00942-w
[29]

Wibowo A, Becker C, Marconi G, Durr J, Price J, et al. 2016. Hyperosmotic stress memory in Arabidopsis is mediated by distinct epigenetically labile sites in the genome and is restricted in the male germline by DNA glycosylase activity. eLife 5:e13546

doi: 10.7554/elife.13546
[30]

Rahman MM, Keya SS, Bulle M, Ahsan SM, Rahman MA, et al. 2025. Past trauma, better future: how stress memory shapes plant adaptation to drought. Functional Plant Biology 52:FP24355

doi: 10.1071/fp24355
[31]

Maleknia M, Ahmadirad N, Golab F, Katebi Y, Haj Mohamad Ebrahim Ketabforoush A. 2023. DNA methylation in cancer: epigenetic view of dietary and lifestyle factors. Epigenetics Insights 16:25168657231199893

doi: 10.1177/25168657231199893
[32]

Xu RH, Wei W, Krawczyk M, Wang W, Luo H, et al. 2017. Circulating tumour DNA methylation markers for diagnosis and prognosis of hepatocellular carcinoma. Nature Materials 16:1155−61

doi: 10.1038/nmat4997
[33]

Yazar V, Ruf WP, Knehr A, Günther K, Ammerpohl O, et al. 2023. DNA methylation analysis in monozygotic twins discordant for ALS in blood cells. Epigenetics Insights 16:25168657231172159

doi: 10.1177/25168657231172159
[34]

Hosseini E, Shahhoseini M, Afsharian P, Karimian L, Ashrafi M, et al. 2019. Role of epigenetic modifications in the aberrant CYP19A1 gene expression in polycystic ovary syndrome. Archives of Medical Science 15:887−95

doi: 10.5114/aoms.2019.86060
[35]

Stoccoro A, Coppedè F. 2021. Mitochondrial DNA methylation and human diseases. International Journal of Molecular Sciences 22:4594

doi: 10.3390/ijms22094594
[36]

Sharma S, Kelly TK, Jones PA. 2010. Epigenetics in cancer. Carcinogenesis 31:27−36

doi: 10.1093/carcin/bgp220
[37]

Tóth DM, Szeri F, Ashaber M, Muazu M, Székvölgyi L, et al. 2025. Tissue-specific roles of de novo DNA methyltransferases. Epigenetics & Chromatin 18:5

doi: 10.1186/s13072-024-00566-2
[38]

Kremer LPM, Cerrizuela S, El-Sammak H, Al Shukairi ME, Ellinger T, et al. 2024. DNA methylation controls stemness of astrocytes in health and ischaemia. Nature 634:415−23

doi: 10.1038/s41586-024-07898-9
[39]

Xu G, Lyu H, Yi Y, Peng Y, Feng Q, et al. 2021. Intragenic DNA methylation regulates insect gene expression and reproduction through the MBD/Tip60 complex. iScience 24:102040

doi: 10.1016/j.isci.2021.102040
[40]

Graham-Paquin AL, Saini D, Sirois J, Hossain I, Katz MS, et al. 2023. ZMYM2 is essential for methylation of germline genes and active transposons in embryonic development. Nucleic Acids Research 51:7314−29

doi: 10.1093/nar/gkad540
[41]

Bernstein C. 2022. DNA methylation and establishing memory. Epigenetics Insights 15:25168657211072499

doi: 10.1177/25168657211072499
[42]

Alhosin M. 2023. Epigenetics Mechanisms of honeybees: secrets of royal jelly. Epigenetics Insights 16:25168657231213717

doi: 10.1177/25168657231213717
[43]

Wilkinson GS, Adams DM, Haghani A, Lu AT, Zoller J, et al. 2021. DNA methylation predicts age and provides insight into exceptional longevity of bats. Nature Communications 12:1615

doi: 10.1038/s41467-021-21900-2
[44]

Taylor BC, Steinthal LH, Dias M, Yalamanchili HK, Ochsner SA, et al. 2024. Histone proteoform analysis reveals epigenetic changes in adult mouse brown adipose tissue in response to cold stress. Epigenetics & Chromatin 17:12

doi: 10.1186/s13072-024-00536-8
[45]

Quinn AM, Allali-Hassani A, Vedadi M, Simeonov A. 2010. A chemiluminescence-based method for identification of histone lysine methyltransferase inhibitors. Molecular BioSystems 6:782−88

doi: 10.1039/b921912a
[46]

Liu C, Lu F, Cui X, Cao X. 2010. Histone methylation in higher plants. Annual Review of Plant Biology 61:395−420

doi: 10.1146/annurev.arplant.043008.091939
[47]

Wang H, Tong X, Tang L, Wang Y, Zhao J, et al. 2022. RLB (RICE LATERAL BRANCH) recruits PRC2-mediated H3K27 tri-methylation on OsCKX4 to regulate lateral branching. Plant Physiology 188:460−76

doi: 10.1093/plphys/kiab494
[48]

An Z, Yin L, Liu Y, Peng M, Shen WH, et al. 2020. The histone methylation readers MRG1/MRG2 and the histone chaperones NRP1/NRP2 associate in fine-tuning Arabidopsis flowering time. The Plant Journal 103:1010−24

doi: 10.1111/tpj.14780
[49]

Yao Y, Zhou J, Wang J, Lei X, Jiang A, et al. 2025. H3K36 methylation stamps transcription resistive to preserve development in plants. Nature Plants 11:808−20

doi: 10.1038/s41477-025-01962-6
[50]

Rudy E, Tanwar UK, Szlachtowska Z, Grabsztunowicz M, Arasimowicz-Jelonek M, et al. 2024. Unveiling the role of epigenetics in leaf senescence: a comparative study to identify different epigenetic regulations of senescence types in barley leaves. BMC Plant Biology 24:863

doi: 10.1186/s12870-024-05573-9
[51]

Song ZT, Zhang LL, Han JJ, Zhou M, Liu JX. 2021. Histone H3K4 methyltransferases SDG25 and ATX1 maintain heat-stress gene expression during recovery in Arabidopsis. The Plant Journal 105:1326−38

doi: 10.1111/tpj.15114
[52]

Li B, Yang C, An B, Wang H, Albaqami M, et al. 2022. Comparative transcriptomic and epigenetic analyses reveal conserved and divergent regulatory pathways in barley response to temperature stresses. Physiologia Plantarum 174:e13727

doi: 10.1111/ppl.13727
[53]

Paul A, Dasgupta P, Roy D, Chaudhuri S. 2017. Comparative analysis of Histone modifications and DNA methylation at OsBZ8 locus under salinity stress in IR64 and Nonabokra rice varieties. Plant Molecular Biology 95:63−88

doi: 10.1007/s11103-017-0636-2
[54]

Vincent SA, Kim JM, Pérez-Salamó I, To TK, Torii C, et al. 2022. Jasmonates and Histone deacetylase 6 activate Arabidopsis genome-wide histone acetylation and methylation during the early acute stress response. BMC Biology 20:83

doi: 10.1186/s12915-022-01273-8
[55]

Fan D, Wang X, Liu T, Liu H, Peng Y, et al. 2024. Epigenetic regulation of high light-induced anthocyanin biosynthesis by histone demethylase IBM1 in Arabidopsis. New Phytologist 242:2570−85

doi: 10.1111/nph.19789
[56]

Kim TH, Nosella ML, Bolik-Coulon N, Harkness RW, Huang SK, et al. 2023. Correlating histone acetylation with nucleosome core particle dynamics and function. Proceedings of the National Academy of Sciences of the United States of America 120:e2301063120

doi: 10.1073/pnas.2301063120
[57]

Sterner DE, Berger SL. 2000. Acetylation of histones and transcription-related factors. Microbiology and Molecular Biology Reviews 64:435−59

doi: 10.1128/MMBR.64.2.435-459.2000
[58]

Sawicka A, Seiser C. 2014. Sensing core histone phosphorylation - a matter of perfect timing. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms 1839:711−8

doi: 10.1016/j.bbagrm.2014.04.013
[59]

Cao J, Yan Q. 2012. Histone ubiquitination and deubiquitination in transcription, DNA damage response, and cancer. Frontiers in Oncology 2:26

doi: 10.3389/fonc.2012.00026
[60]

Lin Y, Qiu T, Wei G, Que Y, Wang W, et al. 2022. Role of histone post-translational modifications in inflammatory diseases. Frontiers in Immunology 13:852272

doi: 10.3389/fimmu.2022.852272
[61]

Liu J, Chang C. 2021. Concerto on chromatin: interplays of different epigenetic mechanisms in plant development and environmental adaptation. Plants 10:2766

doi: 10.3390/plants10122766
[62]

Tresas T, Isaioglou I, Roussis A, Haralampidis K. 2025. A brief overview of the epigenetic regulatory mechanisms in plants. International Journal of Molecular Sciences 26:4700

doi: 10.3390/ijms26104700
[63]

Tatehana M, Kimura R, Mochizuki K, Inada H, Osumi N. 2020. Comprehensive histochemical profiles of histone modification in male germline cells during meiosis and spermiogenesis: Comparison of young and aged testes in mice. PLoS One 15:e0230930

doi: 10.1371/journal.pone.0230930
[64]

Ye N, Lv Z, Huang Z, Cheng Y, Wei Q, et al. 2022. Dietary folic acid supplementation improves semen quality and spermatogenesis through altering autophagy and histone methylation in the testis of aged broiler breeder roosters. Theriogenology 181:8−15

doi: 10.1016/j.theriogenology.2021.12.032
[65]

Mei NH, Guo SM, Zhou Q, Zhang YR, Liu XZ, et al. 2023. H3K4 methylation promotes expression of mitochondrial dynamics regulators to ensure oocyte quality in mice. Advanced Science 10:2204794

doi: 10.1002/advs.202204794
[66]

Zheng Y, Zhao C, Song Q, Xu L, Zhang B, et al. 2023. Histone methylation mediated by NSD1 is required for the establishment and maintenance of neuronal identities. Cell Reports 42:113496

doi: 10.1016/j.celrep.2023.113496
[67]

Bouwman M, de Bakker DEM, Honkoop H, Giovou AE, Versteeg D, et al. 2025. Cross-species comparison reveals that Hmga1 reduces H3K27me3 levels to promote cardiomyocyte proliferation and cardiac regeneration. Nature Cardiovascular Research 4:64−82

doi: 10.1038/s44161-024-00588-9
[68]

Wang J, Zhang Y, Gao Y, Shan S, Li Q. 2021. EZH2 regulates the correlation between skin regeneration and the duration of mechanical stretch. Journal of Investigative Dermatology 141:894−902. e9

doi: 10.1016/j.jid.2020.09.007
[69]

Hu M, Fan Z. 2025. Role and mechanisms of histone methylation in osteogenic/odontogenic differentiation of dental mesenchymal stem cells. International Journal of Oral Science 17:24

doi: 10.1038/s41368-025-00353-z
[70]

Tsai SC, Seto E. 2002. Regulation of histone deacetylase 2 by protein kinase CK2. Journal of Biological Chemistry 277:31826−33

doi: 10.1074/jbc.M204149200
[71]

Kumar S, Mohapatra T. 2021. Dynamics of DNA methylation and its functions in plant growth and development. Frontiers in Plant Science 12:596236

doi: 10.3389/fpls.2021.596236
[72]

Yoshida T, Kawanabe T, Bo Y, Fujimoto R, Kawabe A. 2018. Genome-wide analysis of parent-of-origin allelic expression in endosperms of Brassicaceae species, Brassica rapa. Plant Cell Physiology 59:2590−601

doi: 10.1093/pcp/pcy178
[73]

Chang S, Pikaard CS. 2005. Transcript profiling in Arabidopsis reveals complex responses to global inhibition of DNA methylation and histone deacetylation. Journal of Biological Chemistry 280:796−804

doi: 10.1074/jbc.M409053200
[74]

Morgan HD, Santos F, Green K, Dean W, Reik W. 2005. Epigenetic reprogramming in mammals. Human Molecular Genetics 14:R47−R58

doi: 10.1093/hmg/ddi114
[75]

Miryeganeh M. 2021. Plants' epigenetic mechanisms and abiotic stress. Genes 12:1106

doi: 10.3390/genes12081106
[76]

Ooi SKT, O'Donnell AH, Bestor TH. 2009. Mammalian cytosine methylation at a glance. Journal of Cell Science 122:2787−91

doi: 10.1242/jcs.015123
[77]

Xing L, Liu Y, Xu S, Xiao J, Wang B, et al. 2018. Arabidopsis O-GlcNAc transferase SEC activates histone methyltransferase ATX1 to regulate flowering. The EMBO Journal 37:e98115

doi: 10.15252/embj.201798115
[78]

Parent JS, Cahn J, Herridge RP, Grimanelli D, Martienssen RA. 2021. Small RNAs guide histone methylation in Arabidopsis embryos. Genes & Development 35:841−46

[79]

Niu Q, Song Z, Tang K, Chen L, Wang L, et al. 2021. A histone H3K4me1-specific binding protein is required for siRNA accumulation and DNA methylation at a subset of loci targeted by RNA-directed DNA methylation. Nature Communications 12:3367

doi: 10.1038/s41467-021-23637-4
[80]

Zheng B, Liu J, Gao A, Chen X, Gao L, et al. 2022. Epigenetic reprogramming of H3K27me3 and DNA methylation during leaf-to-callus transition in peach. Horticulture Research 9:uhac132

doi: 10.1093/hr/uhac132
[81]

Shang JY, Cai XW, Su YN, Zhang ZC, Wang X, et al. 2022. Arabidopsis Trithorax histone methyltransferases are redundant in regulating development and DNA methylation. Journal of Integrative Plant Biology 64:2438−54

doi: 10.1111/jipb.13406
[82]

Ding X, Liu X, Jiang G, Li Z, Song Y, et al. 2022. SlJMJ7 orchestrates tomato fruit ripening via crosstalk between H3K4me3 and DML2-mediated DNA demethylation. New Phytologist 233:1202−19

doi: 10.1111/nph.17838
[83]

Niu Q, Xu Y, Huang H, Li L, Tang D, et al. 2025. Two transcription factors play critical roles in mediating epigenetic regulation of fruit ripening in tomato. Proceedings of the National Academy of Sciences of the United States of America 122:e2422798122

doi: 10.1073/pnas.2422798122
[84]

Wang M, He Y, Zhong Z, Papikian A, Wang S, et al. 2025. Histone H3 lysine 4 methylation recruits DNA demethylases to enforce gene expression in Arabidopsis. Nature Plants 11:206−17

doi: 10.1038/s41477-025-01924-y
[85]

Hövel I, Bader R, Louwers M, Haring M, Peek K, et al. 2024. RNA-directed DNA methylation mutants reduce histone methylation at the paramutated maize booster1 enhancer. Plant Physiology 195:1161−79

doi: 10.1093/plphys/kiae072
[86]

Parrilla-Doblas JT, Morales-Ruiz T, Ariza RR, Martínez-Macías MI, Roldán-Arjona T. 2022. The C-terminal domain of Arabidopsis ROS1 DNA demethylase interacts with histone H3 and is required for DNA binding and catalytic activity. DNA Repair 115:103341

doi: 10.1016/j.dnarep.2022.103341
[87]

Huang X, Zhang X, Zong L, Gao Q, Zhang C, et al. 2021. Gene body methylation safeguards ribosomal DNA transcription by preventing PHF6-mediated enrichment of repressive histone mark H4K20me3. Journal of Biological Chemistry 297:101195

doi: 10.1016/j.jbc.2021.101195
[88]

Wang Y, Zhou X, Luo J, Lv S, Liu R, et al. 2021. Recognition of H3K9me1 by maize RNA-directed DNA methylation factor SHH2. Journal of Integrative Plant Biology 63:1091−96

doi: 10.1111/jipb.13103
[89]

Fonouni-Farde C, Christ A, Blein T, Legascue MF, Ferrero L, et al. 2022. The Arabidopsis APOLO and human UPAT sequence-unrelated long noncoding RNAs can modulate DNA and histone methylation machineries in plants. Genome Biology 23:181

doi: 10.1186/s13059-022-02750-7
[90]

Hiratsuka D, Aikawa S, Hirota Y, Fukui Y, Akaeda S, et al. 2023. DNA methylation and histone modification are the possible regulators of preimplantation blastocyst activation in mice. Reproductive Sciences 30:494−525

doi: 10.1007/s43032-022-00988-x
[91]

Klocko AD, Summers CA, Glover ML, Parrish R, Storck WK, et al. 2020. Selection and characterization of mutants defective in DNA methylation in Neurospora crassa. Genetics 216:671−88

doi: 10.1534/genetics.120.303471
[92]

Abhishek S, Deeksha W, Rajakumara E. 2023. Mechanistic insights into allosteric regulation of methylated DNA and histone H3 recognition by SRA and SET domains of SUVH5 and the basis for di-methylation of lysine residue. The FEBS Journal 290:1060−77

doi: 10.1111/febs.16633
[93]

Singh SK, Bahal R, Rasmussen TP. 2020. Evidence that miR-152-3p is a positive regulator of SETDB1-mediated H3K9 histone methylation and serves as a toggle between histone and DNA methylation. Experimental Cell Research 395:112216

doi: 10.1016/j.yexcr.2020.112216
[94]

Hamagami N, Wu DY, Clemens AW, Nettles SA, Li A, et al. 2023. NSD1 deposits histone H3 lysine 36 dimethylation to pattern non-CG DNA methylation in neurons. Molecular Cell 83:1412−1428.e7

doi: 10.1016/j.molcel.2023.04.001
[95]

Deng M, Liu Z, Chen B, Wan Y, Yang H, et al. 2020. Aberrant DNA and histone methylation during zygotic genome activation in goat cloned embryos. Theriogenology 148:27−36

doi: 10.1016/j.theriogenology.2020.02.036
[96]

Yano S, Ishiuchi T, Abe S, Namekawa SH, Huang G, et al. 2022. Histone H3K36me2 and H3K36me3 form a chromatin platform essential for DNMT3A-dependent DNA methylation in mouse oocytes. Nature Communications 13:4440

doi: 10.1038/s41467-022-32141-2
[97]

Khazaei S, Chen CCL, Andrade AF, Kabir N, Azarafshar P, et al. 2023. Single substitution in H3.3G34 alters DNMT3A recruitment to cause progressive neurodegeneration. Cell 186:1162−1178.e20

doi: 10.1016/j.cell.2023.02.023
[98]

Kurahashi Y, Watanabe T, Yamamoto Y, Ureshino H, Kamachi K, et al. 2023. Dual targeting of aberrant DNA and histone methylation synergistically suppresses tumor cell growth in ATL. Blood Advances 7:1545−59

doi: 10.1182/bloodadvances.2022008362
[99]

Kowluru RA, Radhakrishnan R, Mohammad G. 2021. Regulation of Rac1 transcription by histone and DNA methylation in diabetic retinopathy. Scientific Reports 11:14097

doi: 10.1038/s41598-021-93420-4