[1]

Ray DK, West PC, Clark M, Gerber JS, Prishchepov AV, et al. 2019. Climate change has likely already affected global food production. PLoS One 14:e0217148

doi: 10.1371/journal.pone.0217148
[2]

IPCC. 2021. Summary for Policymakers. In Climate change 2021: The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, eds. Masson-Delmotte V, Zhai P, Pirani A, Connors C, Péan C, et al. Cambridge and New York: Cambridge University Press. pp. 3−32 doi: 10.1017/9781009157896.001

[3]

Abbas A, Rossi S, Huang B. 2024. Plant metabolic responses and adaptation mechanisms to elevated night temperature associated with global warming. Grass Research 4:e015

doi: 10.48130/grares-0024-0013
[4]

Dovlatabadi A, Estiri EH, Najafi ML, Ghorbani A, Rezaei H, et al. 2022. Bioaccumulation and health risk assessment of exposure to potentially toxic elements by consuming agricultural products irrigated with wastewater effluents. Environmental Research 205:112479

doi: 10.1016/j.envres.2021.112479
[5]

Natasha N, Shahid M, Murtaza B, Bibi I, Khalid S, et al. 2022. Accumulation pattern and risk assessment of potentially toxic elements in selected wastewater-irrigated soils and plants in Vehari, Pakistan. Environmental Research 214:114033

doi: 10.1016/j.envres.2022.114033
[6]

Raveh E, Ben-Gal A. 2016. Irrigation with water containing salts: evidence from a macro-data national case study in Israel. Agricultural Water Management 170:176−79

doi: 10.1016/j.agwat.2015.10.035
[7]

Wang R, Olsen CJ, Gould MA, Kowalewski AR. 2023. Field evaluation of perennial ryegrass cultivars for use with effluent water irrigation. Grass Research 3:23

doi: 10.48130/gr-2023-0023
[8]

Ojija F. 2024. Perennial grasses: natural allies for soil health and biodiversity, climate change mitigation, and invasive plant management. Grass Research 4:e020

doi: 10.48130/grares-0024-0019
[9]

Häusler RE, Ludewig F, Krueger S. 2014. Amino acids – a life between metabolism and signaling. Plant Science 229:225−37

doi: 10.1016/j.plantsci.2014.09.011
[10]

Raven PH, Evert RF, Curtis H. 1981. Biology of Plants. New York: Worth Publishers, Inc. pp. 537−57

[11]

Gleason F, Chollet R. 2011. Plant biochemistry, eds. Steinbach M, Turner MR, Isaacs R. LLC, Sudbury, Massachusetts: Jones & Bartlett Learning. pp. 209−11

[12]

D'Mello JPF. 2015. Amino acids in higher plants. Wallingford: CABI. 596 pp. doi: 10.1079/9781780642635.0000

[13]

Lea PJ, Sodek L, Parry MAJ, Shewry PR, Halford NG. 2007. Asparagine in plants. Annals of Applied Biology 150:1−26

doi: 10.1111/j.1744-7348.2006.00104.x
[14]

Du H, Wang Z, Yu W, Liu Y, Huang B. 2011. Differential metabolic responses of perennial grass Cynodon transvaalensis × Cynodon dactylon (C4) and Poa pratensis (C3) to heat stress. Physiologia Plantarum 141:251−64

doi: 10.1111/j.1399-3054.2010.01432.x
[15]

Wang J, Yuan B, Xu Y, Huang B. 2018. Differential responses of amino acids and soluble proteins to heat stress associated with genetic variations in heat tolerance for hard fescue. Journal of the American Society for Horticultural Science 143:45−55

doi: 10.21273/JASHS04246-17
[16]

McBride S, Rossi S, Huang B. 2024. Differential metabolic responses to heat stress associated with interspecific variations in stress tolerance for annual bluegrass and creeping bentgrass. Grass Research 4:e013

doi: 10.48130/grares-0024-0011
[17]

Kusaka M, Ohta M, Fujimura T. 2005. Contribution of inorganic components to osmotic adjustment and leaf folding for drought tolerance in pearl millet. Physiologia Plantarum 125:474−89

doi: 10.1111/j.1399-3054.2005.00578.x
[18]

Araújo WL, Tohge T, Ishizaki K, Leaver CJ, Fernie AR. 2011. Protein degradation − an alternative respiratory substrate for stressed plants. Trends in Plant Science 16:489−98

doi: 10.1016/j.tplants.2011.05.008
[19]

Hildebrandt TM, Nunes Nesi A, Araújo WL, Braun HP. 2015. Amino acid catabolism in plants. Molecular Plant 8:1563−79

doi: 10.1016/j.molp.2015.09.005
[20]

Velíšek J, Cejpek K. 2006. Biosynthesis of food constituents: amino acids 2. The alanine-valine-leucine, serine-cysteine-glycine, and aromatic and heterocyclic amino acids groups − a review. Czech Journal of Food Sciences 24:45−58

doi: 10.17221/3299-CJFS
[21]

Xu Y, Du H, Huang B. 2013. Identification of metabolites associated with superior heat tolerance in thermal bentgrass through metabolic profiling. Crop Science 53:1626−35

doi: 10.2135/cropsci2013.01.0045
[22]

Dixon RA. 2001. Natural products and plant disease resistance. Nature 411:843−47

doi: 10.1038/35081178
[23]

Jensen RA, Morris P, Bonner C, Zamir LO. 1989. Biochemical interface between aromatic amino acid biosynthesis and secondary metabolism. Plant Cell Wall Polymers 6:89−107

doi: 10.1021/bk-1989-0399.ch006
[24]

Posmyk MM, Janas KM. 2009. Melatonin in plants. Acta Physiologiae Plantarum 31:1−11

doi: 10.1007/s11738-008-0213-z
[25]

Tzin V, Galili G. 2010. The biosynthetic pathways for shikimate and aromatic amino acids in Arabidopsis thaliana. The Arabidopsis Book/American Society of Plant Biologists 8:e0132

doi: 10.1199/tab.0132
[26]

Bowne JB, Erwin TA, Juttner J, Schnurbusch T, Langridge P, et al. 2012. Drought responses of leaf tissues from wheat cultivars of differing drought tolerance at the metabolite level. Molecular Plant 5:418−29

doi: 10.1093/mp/ssr114
[27]

Kang Z, Babar MA, Khan N, Guo J, Khan J, et al. 2019. Comparative metabolomic profiling in the roots and leaves in contrasting genotypes reveals complex mechanisms involved in post-anthesis drought tolerance in wheat. PLoS One 14:e0213502

doi: 10.1371/journal.pone.0213502
[28]

Ogura Y, Ishihara A, Iwamura H. 2001. Induction of hydroxycinnamic acid amides and tryptophan by jasmonic acid, abscisic acid and osmotic stress in barley leaves. Zeitschrift Für Naturforschung C, Journal of Biosciences 56:193−202

doi: 10.1515/znc-2001-3-405
[29]

Witt S, Galicia L, Lisec J, Cairns J, Tiessen A, et al. 2012. Metabolic and phenotypic responses of greenhouse-grown maize hybrids to experimentally controlled drought stress. Molecular Plant 5:401−17

doi: 10.1093/mp/ssr102
[30]

Bourguignon J, Rébeillé F, Douce R. 1998. Serine and glycine metabolism in higher plants. In Plant Amino Acids: Biochemistry and Biotechnology, ed. Singh BK. Boca Raton, New York: CRC Press. 648 pp. doi: 10.1201/9781482270068

[31]

Moore TS Jr. 1982. Phospholipid biosynthesis. Annual Review of Plant Physiology 33:235−59

doi: 10.1146/annurev.pp.33.060182.001315
[32]

Saito K. 1999. Biosynthesis of cysteine. In Plant Amino Acids: Biochemistry and Biotechnology, ed. Singh BK. Boca Raton, New York: CRC Press. pp. 267−91 doi: 10.1201/9781482270068

[33]

Timm S, Florian A, Wittmiß M, Jahnke K, Hagemann M, et al. 2013. Serine acts as a metabolic signal for the transcriptional control of photorespiration-related genes in Arabidopsis. Plant Physiology 162:379−89

doi: 10.1104/pp.113.215970
[34]

Wulfert S, Krueger S. 2018. Phosphoserine Aminotransferase1 is part of the phosphorylated pathways for serine biosynthesis and essential for light and sugar-dependent growth promotion. Frontiers in Plant Science 9:1712

doi: 10.3389/fpls.2018.01712
[35]

Noctor G, Arisi AM, Jouanin L, Valadier MH, Roux Y, et al. 1997. Light-dependent modulation of foliar glutathione synthesis and associated amino acid metabolism in poplar overexpressing γ-glutamylcysteine synthetase. Planta 202:357−69

doi: 10.1007/s004250050138
[36]

Noctor G, Foyer CH. 1998. ASCORBATE AND GLUTATHIONE: keeping active oxygen under control. Annual Review of Plant Biology 49:249−279

doi: 10.1146/annurev.arplant.49.1.249
[37]

Waditee R, Bhuiyan MNH, Rai V, Aoki K, Tanaka Y, et al. 2005. Genes for direct methylation of glycine provide high levels of glycinebetaine and abiotic-stress tolerance in Synechococcus and Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 102:1318−23

doi: 10.1073/pnas.0409017102
[38]

Voss I, Sunil B, Scheibe R, Raghavendra AS. 2013. Emerging concept for the role of photorespiration as an important part of abiotic stress response. Plant Biology 15:713−22

doi: 10.1111/j.1438-8677.2012.00710.x
[39]

Wingler A, Quick WP, Bungard RA, Bailey KJ, Lea PJ, et al. 1999. The role of photorespiration during drought stress: an analysis utilizing barley mutants with reduced activities of photorespiratory enzymes. Plant, Cell & Environment 22:361−73

doi: 10.1046/j.1365-3040.1999.00410.x
[40]

Miflin BJ, Lea PJ. 1980. Ammonia assimilation. In Amino Acids and Derivatives, ed. Miflin BJ. USA: Academic Press. pp. 169−202 doi: 10.1016/B978-0-12-675405-6.50010-3

[41]

Bouché N, Fromm H. 2004. GABA in plants: just a metabolite? Trends in Plant Science 9:110−15

doi: 10.1016/j.tplants.2004.01.006
[42]

Shelp BJ, Bown AW, McLean MD. 1999. Metabolism and functions of gamma-aminobutyric acid. Trends in Plant Science 4:446−52

doi: 10.1016/S1360-1385(99)01486-7
[43]

Signorelli S, Dans PD, Coitiño EL, Borsani O, Monza J. 2015. Connecting proline and γ-aminobutyric acid in stressed plants through non-enzymatic reactions. PLoS One 10:e0115349

doi: 10.1371/journal.pone.0115349
[44]

Dubey RS, Srivastava RK, Pessarakli M. 2021. Physiological mechanisms of nitrogen absorption and assimilation in plants under stressful conditions. In Handbook of Plant and Crop Physiology, ed. Pessarakli M. 3rd Edition. Boca Raton, Florida: CRC Press. pp. 579–616 doi: 10.1201/9781003093640

[45]

Goel P, Singh AK. 2015. Abiotic stresses downregulate key genes involved in nitrogen uptake and assimilation in Brassica juncea L. PLoS One 10:e0143645

doi: 10.1371/journal.pone.0143645
[46]

Lea PJ, Ireland RJ. 1998. Nitrogen metabolism in higher plants. In: Plant Amino Acids: Biochemistry and Biotechnology, ed. Singh BK. Boca Raton, New York: CRC Press. pp. 1−48. doi: 10.1201/9781482270068

[47]

Ahmed N, Zhang Y, Li K, Zhou Y, Zhang M, et al. 2019. Exogenous application of glycine betaine improved water use efficiency in winter wheat (Triticum aestivum L.) via modulating photosynthetic efficiency and antioxidative capacity under conventional and limited irrigation conditions. The Crop Journal 7:635−50

doi: 10.1016/j.cj.2019.03.004
[48]

Ahmed N, Zhang Y, Yu H, Gabar A, Zhou Y, et al. 2019b. Seed priming with glycine betaine improves seed germination characteristics and antioxidant capacity of wheat (Triticum aestivum L.) seedlings under water-stress conditions. Applied Ecology and Environmental Research 17:8333−50

doi: 10.15666/aeer/1704_83338350
[49]

Gupta N, Thind SK, Bains NS. 2014. Glycine betaine application modifies biochemical attributes of osmotic adjustment in drought stressed wheat. Plant Growth Regulation 72:221−28

doi: 10.1007/s10725-013-9853-0
[50]

Gupta N, Thind SK. 2015. Improving photosynthetic performance of bread wheat under field drought stress by foliar applied glycine betaine. Journal of Agricultural Science and Technology 17:75−86

[51]

Haque MS, Hossain KS, Baroi A, Alamery S, Attia KA, et al. 2024. Foliar application of abscisic acid and glycine betaine induces tolerance to water scarcity in wheat. Plant Growth Regulation 104:1209−25

doi: 10.1007/s10725-024-01190-6
[52]

Raza MAS, Saleem MF, Shah GM, Khan IH, Raza A. 2014. Exogenous application of glycinebetaine and potassium for improving water relations and grain yield of wheat under drought. Journal of Soil Science and Plant Nutrition 14:348−64

doi: 10.4067/s0718-95162014005000028
[53]

de Oliveira Maia Júnior S, de Andrade JR, dos Santos CM, Santos JV, dos Santos Silva LK, et al. 2020. Foliar-applied glycine betaine minimizes drought stress-related impact to gas exchange and the photochemical efficiency of PSII in sugarcane. Theoretical and Experimental Plant Physiology 32:315−29

doi: 10.1007/s40626-020-00188-5
[54]

Wang GY, Ahmad S, Wang BW, Shi LB, Wang Y, et al. 2024. Exogenous glycinebetaine regulates the contrasting responses in leaf physiochemical attributes and growth of maize under drought and flooding stresses. Biology 13:360

doi: 10.3390/biology13060360
[55]

Farooq M, Basra SMA, Wahid A, Cheema ZA, Cheema MA, et al. 2008. Physiological role of exogenously applied glycinebetaine to improve drought tolerance in fine grain aromatic rice (Oryza sativa L.). Journal of Agronomy and Crop Science 194:325−33

doi: 10.1111/j.1439-037X.2008.00323.x
[56]

Taiz L, Zeiger E. 2002. Plant Physiology. Sunderland: Sinaur Associates, Inc. pp. 34, 593

[57]

De Angeli A, Zhang J, Meyer S, Martinoia E. 2013. AtALMT9 is a malate-activated vacuolar chloride channel required for stomatal opening in Arabidopsis. Nature Communications 4:1804

doi: 10.1038/ncomms2815
[58]

Xu B, Long Y, Feng X, Zhu X, Sai N, et al. 2021. GABA signalling modulates stomatal opening to enhance plant water use efficiency and drought resilience. Nature Communications 12:1952

doi: 10.1038/s41467-021-21694-3
[59]

Jiang Y. 2023. Application of gamma-aminobutyric acid and nitric oxide on turfgrass stress resistance: current knowledge and perspectives. Grass Research 3:1−6

doi: 10.48130/GR-2023-0003
[60]

Jiang J, Guo Z, Sun X, Jiang Y, Xie F, et al. 2023. Role of proline in regulating turfgrass tolerance to abiotic stress. Grass Research 3:1−7

doi: 10.48130/GR-2023-0002
[61]

Chapman C, Rossi S, Yuan B, Huang B. 2022. Differential regulation of amino acids and nitrogen for drought tolerance and poststress recovery in creeping bentgrass. Journal of the American Society for Horticultural Science 147:208−15

doi: 10.21273/JASHS05215-22
[62]

Li Z, Peng Y, Huang B. 2016. Physiological effects of γ-aminobutyric acid application on improving heat and drought tolerance in creeping bentgrass. Journal of the American Society for Horticultural Science 141:76−84

doi: 10.21273/JASHS.141.1.76
[63]

Li Z, Peng Y, Huang B. 2018. Alteration of transcripts of stress-protective genes and transcriptional factors by γ-aminobutyric acid (GABA) associated with improved heat and drought tolerance in creeping bentgrass (Agrostis stolonifera). International Journal of Molecular Sciences 19:1623

doi: 10.3390/ijms19061623
[64]

Li Z, Huang T, Tang M, Cheng B, Peng Y, et al. 2019. iTRAQ-based proteomics reveals key role of γ-aminobutyric acid (GABA) in regulating drought tolerance in perennial creeping bentgrass (Agrostis stolonifera). Plant Physiology and Biochemistry 145:216−26

doi: 10.1016/j.plaphy.2019.10.018
[65]

Li Z, Tang M, Cheng B, Han L. 2021. Transcriptional regulation and stress-defensive key genes induced by γ-aminobutyric acid in association with tolerance to water stress in creeping bentgrass. Plant Signaling and Behavior 16:1858247

doi: 10.1080/15592324.2020.1858247
[66]

Tang M, Li Z, Luo L, Cheng B, Zhang Y, et al. 2020. Nitric oxide signal, nitrogen metabolism, and water balance affected by γ-aminobutyric acid (GABA) in relation to enhanced tolerance to water stress in creeping bentgrass. International Journal of Molecular Sciences 21:7460

doi: 10.3390/ijms21207460
[67]

Krishnan S, Laskowski K, Shukla V, Merewitz EB. 2013. Mitigation of drought stress damage by exogenous application of a non-protein amino acid γ–aminobutyric acid on perennial ryegrass. Journal of the American Society for Horticultural Science 138:358−66

doi: 10.21273/JASHS.138.5.358
[68]

McCoy RM, Meyer GW, Rhodes D, Murray GC, Sors TG, et al. 2020. Exploratory study on the foliar incorporation and stability of isotopically labeled amino acids applied to turfgrass. Agronomy 10:358

doi: 10.3390/agronomy10030358
[69]

Shim JS, Jeong HI, Bang SW, Jung SE, Kim G, et al. 2023. Drought-induced branched-chain amino acid aminotransferase enhances drought tolerance in rice. Plant Physiology 191:1435−47

doi: 10.1093/plphys/kiac560
[70]

Rao SR, Qayyum A, Razzaq A, Ahmad M, Mahmood I, et al. 2012. Role of foliar application of salicylic acid and L-tryptophan in drought tolerance of maize. The Journal of Animal and Plant Sciences 22:768−72

[71]

Maqsood MF, Shahbaz M, Kanwal S, Kaleem M, Shah SMR, et al. 2022. Methionine promotes the growth and yield of wheat under water deficit conditions by regulating the antioxidant enzymes, reactive oxygen species, and ions. Life 12:969

doi: 10.3390/life12070969
[72]

Hussein HA, Alshammari SO, Kenawy SKM, Elkady FM, Badawy AA. 2022. Grain-priming with L-arginine improves the growth performance of wheat (Triticum aestivum L.) plants under drought stress. Plants 11:1219

doi: 10.3390/plants11091219
[73]

Shen W, Gao C, Cueto R, Liu L, Fu H, et al. 2020. Homocysteine-methionine cycle is a metabolic sensor system controlling methylation-regulated pathological signaling. Redox Biology 28:101322

doi: 10.1016/j.redox.2019.101322
[74]

Jalal-ud-Din J, Khan SU, Khan A, Naveed S. 2015. Effect of exogenously applied kinetin and glycine betaine on metabolic and yield attributes of rice (Oryza sativa L.) under drought stress. Emirates Journal of Food and Agriculture 27:75−81

doi: 10.9755/ejfa.v27i1.17950
[75]

Zhang L, Li S, Liang Z. 2009. Differential plant growth and osmotic effects of two maize (Zea mays L. ) cultivars to exogenous glycinebetaine application under drought stress. Plant Growth Regulation 58:297−305

doi: 10.1007/s10725-009-9379-7
[76]

Cha-um S, Samphumphuang T, Kirdmanee C. 2013. Glycine betaine alleviates water deficit stress in indica rice using proline accumulation, photosynthetic efficiencies, growth performances and yield attributes. Australian Journal of Crop Science 7(2):213−18

[77]

Farooq M, Nawaz A, Chaudhry MAM, Indrasti R, Rehman A. 2017. Improving resistance against terminal drought in bread wheat by exogenous application of proline and gamma-aminobutyric acid. Journal of Agronomy and Crop Science 203:464−72

doi: 10.1111/jac.12222
[78]

Ali Q, Anwar F, Ashraf M, Saari N, Perveen R. 2013. Ameliorating effects of exogenously applied proline on seed composition, seed oil quality and oil antioxidant activity of maize (Zea mays L.) under drought stress. International Journal of Molecular Sciences 14:818−35

doi: 10.3390/ijms14010818
[79]

Sun Y, Miao F, Wang Y, Liu H, Wang X, et al. 2023. L-Arginine alleviates the reduction in photosynthesis and antioxidant activity induced by drought stress in maize seedlings. Antioxidants 12:482

doi: 10.3390/antiox12020482
[80]

Silveira NM, Ribeiro RV, de Morais SFN, de Souza SCR, da Silva SF, et al. 2021. Leaf arginine spraying improves leaf gas exchange under water deficit and root antioxidant responses during the recovery period. Plant Physiology and Biochemistry 162:315−26

doi: 10.1016/j.plaphy.2021.02.036
[81]

Luo H, Zhang Y, Yi W, Zhang S, Zhang Q, et al. 2024. Foliar application of phenylalanine, tryptophan, and tyrosine in fragrant rice production: aroma, yield, grain quality, and economic return. European Journal of Agronomy 155:127117

doi: 10.1016/j.eja.2024.127117
[82]

Wang N, Cao F, Richmond MEA, Qiu C, Wu F. 2019. Foliar application of betaine improves water-deficit stress tolerance in barley (Hordeum vulgare L.). Plant Growth Regulation 89:109−18

doi: 10.1007/s10725-019-00510-5
[83]

Anjum SA, Farooq M, Wang LC, Xue LL, Wang SG, et al. 2011. Gas exchange and chlorophyll synthesis of maize cultivars are enhanced by exogenously applied glycine betaine under drought conditions. Plant, Soil and Environment 57:326−31

doi: 10.17221/41/2011-pse
[84]

Gan L, Zhang X, Liu S, Yin S. 2018. Mitigating effect of glycinebetaine pretreatment on drought stress responses of creeping bentgrass. HortScience 53:1842−48

doi: 10.21273/HORTSCI13429-18
[85]

Nawaz M, Wang Z. 2020. Abscisic acid and glycine betaine mediated tolerance mechanisms under drought stress and recovery in Axonopus compressus: a new insight. Scientific Reports 10:6942

doi: 10.1038/s41598-020-63447-0
[86]

Hasanuzzaman M, Nahar K, Rahman A, Inafuku M, Oku H, et al. 2018. Exogenous nitric oxide donor and arginine provide protection against short-term drought stress in wheat seedlings. Physiology and Molecular Biology of Plants 24:993−1004

doi: 10.1007/s12298-018-0531-6
[87]

Kolupaev Y, Shakhov IV, Kokorev AI, Relina LI, Dyachenko AI, et al. 2024. Gamma-aminobutyric acid induction of triticale protective systems under drought, salt stress or a combination of the two. Turkish Journal of Botany 48:235−48

doi: 10.55730/1300-008X.2812
[88]

Buchanan-Wollaston V. 1997. The molecular biology of leaf senescence. Journal of Experimental Botany 48:181−99

doi: 10.1093/jxb/48.2.181
[89]

Veerasamy M, He Y, Huang B. 2007. Leaf senescence and protein metabolism in creeping bentgrass exposed to heat stress and treated with cytokinins. Journal of the American Society for Horticultural Science 132:467−72

doi: 10.21273/JASHS.132.4.467
[90]

Vierstra RD. 1996. Proteolysis in plants: mechanisms and functions. Post-Transcriptional Control of Gene Expression in Plants 32:275−302

doi: 10.1007/BF00039386
[91]

Oukarroum A, El Madidi S, Strasser RJ. 2012. Exogenous glycine betaine and proline play a protective role in heat-stressed barley leaves (Hordeum vulgare L.): a chlorophyll a fluorescence study. Plant Biosystems − An International Journal Dealing with all Aspects of Plant Biology 146:1037−43

doi: 10.1080/11263504.2012.697493
[92]

Nayyar H, Kaur R, Kaur S, Singh R. 2014. γ-Aminobutyric acid (GABA) imparts partial protection from heat stress injury to rice seedlings by improving leaf turgor and upregulating osmoprotectants and antioxidants. Journal of Plant Growth Regulation 33:408−19

doi: 10.1007/s00344-013-9389-6
[93]

Li Z, Zeng W, Cheng B, Huang T, Peng Y, et al. 2020. γ-Aminobutyric acid enhances heat tolerance associated with the change of proteomic profiling in creeping bentgrass. Molecules 25:4270

doi: 10.3390/molecules25184270
[94]

Zeng W, Hassan MJ, Kang D, Peng Y, Li Z. 2021. Photosynthetic maintenance and heat shock protein accumulation relating to γ-aminobutyric acid (GABA)-regulated heat tolerance in creeping bentgrass (Agrostis stolonifera). South African Journal of Botany 141:405−13

doi: 10.1016/j.sajb.2021.05.028
[95]

Li Z, Yu J, Peng Y, Huang B. 2016. Metabolic pathways regulated by γ-aminobutyric acid (GABA) contributing to heat tolerance in creeping bentgrass (Agrostis stolonifera). Scientific Reports 6:30338

doi: 10.1038/srep30338
[96]

Lei S, Rossi S, Huang B. 2022. Metabolic and physiological regulation of aspartic acid-mediated enhancement of heat stress tolerance in perennial ryegrass. Plants 11:199

doi: 10.3390/plants11020199
[97]

Hassanein RA, El-khawas SA, Ibrahim SK, El-Bassiouny HM, Mostafa HA, et al. 2013. Improving the thermo tolerance of wheat plant by foliar application of arginine or putrescine. Pakistan Journal of Botany 45:111−18

[98]

Khalil SI, El-Bassiouny HMS, Hassanein RA, Mostafa HA, El-khawas SA, et al. 2009. Antioxidant defense system in heat shocked wheat plants previously treated with arginine or putrescine. Australian Journal of Basic and Applied Sciences 3:1517−26