[1]

Food and Agriculture Organization of the United Nations (FAO). 2024. Global status of salt-affected soils. Main report. FAO, Rome, Italy. doi: 10.4060/cd3044en

[2]

Food and Agriculture Organization of the United Nations (FAO). 2021. Global map of salt-affected soils (GSASmap v1.0). FAO, Rome, Italy. https://openknowledge.fao.org/handle/20.500.14283/cb7247en

[3]

Balasubramaniam T, Shen G, Esmaeili N, Zhang H. 2023. Plants' response mechanisms to salinity stress. Plants 12:2253

doi: 10.3390/plants12122253
[4]

Saslis-Lagoudakis CH, Moray C, Bromham L. 2014. Evolution of salt tolerance in angiosperms: a phylogenetic approach. In Plant Ecology and Evolution in Harsh Environments, eds. Rajakaruna N, Boyd RS, Harris TB. New York, USA: Nova Science Publishers. pp. 77−95 https://lindellbromham.com/wp-content/uploads/2014/08/chapter-id_27793_7x10-1.pdf

[5]

Choudhary P, Pramitha L, Rana S, Verma S, Aggarwal PR, et al. 2021. Hormonal crosstalk in regulating salinity stress tolerance in graminaceous crops. Physiologia Plantarum 173:1587−96

doi: 10.1111/ppl.13558
[6]

Chauhan PK, Upadhyay SK, Tripathi M, Singh R, Krishna D, et al. 2023. Understanding the salinity stress on plant and developing sustainable management strategies mediated salt-tolerant plant growth-promoting rhizobacteria and CRISPR/Cas9. Biotechnology & Genetic Engineering Reviews 39:311−47

doi: 10.1080/02648725.2022.2131958
[7]

Zhu Y, Fu Q, Zhu C, Li Y, Yuan F, et al. 2024. Review on physiological and molecular mechanisms for enhancing salt tolerance in turfgrass. Grass Research 4:e024

doi: 10.48130/grares-0024-0020
[8]

Bokolia M, Kumar A, Singh B. 2024. Plant tolerance to salinity stress: regulating transcription factors and their functional role in the cellular transcriptional network. Gene Reports 34:101873

doi: 10.1016/j.genrep.2023.101873
[9]

Laity JH, Lee BM, Wright PE. 2001. Zinc finger proteins: new insights into structural and functional diversity. Current Opinion in Structural Biology 11:39−46

doi: 10.1016/S0959-440X(00)00167-6
[10]

Han G, Qiao Z, Li Y, Wang C, Wang B. 2021. The roles of CCCH zinc-finger proteins in plant abiotic stress tolerance. International Journal of Molecular Sciences 22:8327

doi: 10.3390/ijms22158327
[11]

Liu Y, Khan AR, Gan Y. 2022. C2H2 zinc finger proteins response to abiotic stress in plants. International Journal of Molecular Sciences 23:2730

doi: 10.3390/ijms23052730
[12]

He P, Yang Y, Wang Z, Zhao P, Yuan Y, et al. 2019. Comprehensive analyses of ZFP gene family and characterization of expression profiles during plant hormone response in cotton. BMC Plant Biology 19:329

doi: 10.1186/s12870-019-1932-6
[13]

Fan G, Yu Y, Zhang X, Jiang J, Wang S, et al. 2025. Comprehensive analysis of the stress associated protein (SAP) family and the function of PagSAP9 from Populus alba × P. glandulosa in salt stress. Phytochemistry 232:114367

doi: 10.1016/j.phytochem.2024.114367
[14]

Panzade KP, Kharate PS, Shende R, Jacob J, Srividhya S, et al. 2025. Genome-wide identification, comparative analysis, and expression profiling of stress-associated protein (SAP) gene family in Sorghum bicolor under abiotic stress. 3 Biotech 15:246

doi: 10.1007/s13205-025-04424-0
[15]

Su A, Qin Q, Liu C, Zhang J, Yu B, et al. 2022. Identification and analysis of stress-associated proteins (SAPs) protein family and drought tolerance of ZmSAP8 in transgenic Arabidopsis. International Journal of Molecular Sciences 23:14109

doi: 10.3390/ijms232214109
[16]

Lv B, Deng H, Wei J, Feng Q, Liu B, et al. 2024. SmJAZs-SmbHLH37/SmERF73-SmSAP4 module mediates jasmonic acid signaling to balance biosynthesis of medicinal metabolites and salt tolerance in Salvia miltiorrhiza. New Phytologist 244:1450−66

doi: 10.1111/nph.20110
[17]

Xie H, Yang Q, Wang X, Schläppi MR, Yan H, et al. 2022. Genome-wide identification of the A20/AN1 zinc finger protein family genes in Ipomoea batatas and its two relatives and function analysis of IbSAP16 in salinity tolerance. International Journal of Molecular Sciences 23:11551

doi: 10.3390/ijms231911551
[18]

Fan J, Xiang Y, Zhang B, Noor M, Zhang J, et al. 2024. Progress and prospects of bermudagrass research in the last decade. Grass Research 4:e017

doi: 10.48130/grares-0024-0015
[19]

Clough SJ, Bent AF. 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant Journal 16:735−43

doi: 10.1046/j.1365-313x.1998.00343.x
[20]

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 35:1547−49

doi: 10.1093/molbev/msy096
[21]

Hoagland DR, Arnon DI. 1950. The water culture method for growing plants without soil. Circular 347. California Agricultural Experiment Station, Berkeley, CA, USA. pp. 1−32. www.researchgate.net/file.PostFileLoader.html?id=54aefd7ed4c118b6358b45db&assetKey=AS%3A273668901408776%401442259158553

[22]

Murashige T, Skoog F. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum 15:473−97

doi: 10.1111/j.1399-3054.1962.tb08052.x
[23]

Chen Y, Tan Z, Hu B, Yang Z, Xu B, et al. 2015. Selection and validation of reference genes for target gene analysis with quantitative RT-PCR in leaves and roots of bermudagrass under four different abiotic stresses. Physiologia Plantarum 155:138−48

doi: 10.1111/ppl.12302
[24]

Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCᴛ method. Methods 25:402−8

doi: 10.1006/meth.2001.1262
[25]

Jespersen D, Huang B. 2015. Proteins associated with heat-induced leaf senescence in creeping bentgrass as affected by foliar application of nitrogen, cytokinins, and an ethylene inhibitor. Proteomics 15:798−812

doi: 10.1002/pmic.201400393
[26]

Mäser P, Eckelman B, Vaidyanathan R, Horie T, Fairbairn DJ, et al. 2002. Altered shoot/root Na+ distribution and bifurcating salt sensitivity in Arabidopsis by genetic disruption of the Na+ transporter AtHKT1. FEBS Letters 531:157−61

doi: 10.1016/S0014-5793(02)03488-9
[27]

Alexieva V, Sergiev I, Mapelli S, Karanov E. 2001. The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant, Cell & Environment 24:1337−44

doi: 10.1046/j.1365-3040.2001.00778.x
[28]

Langebartels C, Wohlgemuth H, Kschieschan S, Grün S, Sandermann H. 2002. Oxidative burst and cell death in ozone-exposed plants. Plant Physiology and Biochemistry 40:567−75

doi: 10.1016/S0981-9428(02)01416-X
[29]

Jabs T, Dietrich RA, Dangl JL. 1996. Initiation of runaway cell death in an Arabidopsis mutant by extracellular superoxide. Science 273:1853−56

doi: 10.1126/science.273.5283.1853
[30]

Bates LS, Waldren RP, Teare ID. 1973. Rapid determination of free proline for water-stress studies. Plant and Soil 39:205−7

doi: 10.1007/BF00018060
[31]

Maness N. 2010. Extraction and Analysis of Soluble Carbohydrates. In Plant Stress Tolerance: Methods and Protocols, ed. Sunkar R. Totowa, NJ: Humana Press. pp. 341−70 pp doi: 10.1007/978-1-60761-702-0_22

[32]

Fu H, Yang Y. 2023. How plants tolerate salt stress. Current Issues in Molecular Biology 45:5914−34

doi: 10.3390/cimb45070374
[33]

Zhang H, Yu C, Zhang Q, Qiu Z, Zhang X, et al. 2025. Salinity survival: molecular mechanisms and adaptive strategies in plants. Frontiers in Plant Science 16:1527952

doi: 10.3389/fpls.2025.1527952
[34]

Tyagi H, Jha S, Sharma M, Giri J, Tyagi AK. 2014. Rice SAPs are responsive to multiple biotic stresses and overexpression of OsSAP1, an A20/AN1 zinc-finger protein, enhances the basal resistance against pathogen infection in tobacco. Plant Science 225:68−76

doi: 10.1016/j.plantsci.2014.05.016
[35]

Ströher E, Wang XJ, Roloff N, Klein P, Husemann A, et al. 2009. Redox-dependent regulation of the stress-induced zinc-finger protein SAP12 in Arabidopsis thaliana. Molecular Plant 2:357−67

doi: 10.1093/mp/ssn084
[36]

Fu Q, Duan H, Cao Y, Li Y, Lin X, et al. 2022. Comprehensive identification and functional analysis of stress-associated protein (SAP) genes in osmotic stress in maize. International Journal of Molecular Sciences 23:14010

doi: 10.3390/ijms232214010
[37]

Zhang XZ, Zheng WJ, Cao XY, Cui XY, Zhao SP, et al. 2019. Genomic analysis of stress associated proteins in soybean and the role of GmSAP16 in abiotic stress responses in Arabidopsis and soybean. Frontiers in Plant Science 10:1453

doi: 10.3389/fpls.2019.01453
[38]

Billah SA, Khan NZ, Ali W, Aasim M, Usman M, et al. 2022. Genome-wide in silico identification and characterization of the stress associated protein (SAP) gene family encoding A20/AN1 zinc-finger proteins in potato (Solanum tuberosum L.). PLoS One 17:e0273416

doi: 10.1371/journal.pone.0273416
[39]

Zhang Y, Lan H, Shao Q, Wang R, Chen H, et al. 2016. An A20/AN1-type zinc finger protein modulates gibberellins and abscisic acid contents and increases sensitivity to abiotic stress in rice (Oryza sativa). Journal of Experimental Botany 67:315−26

doi: 10.1093/jxb/erv464
[40]

Kanneganti V, Gupta AK. 2008. Overexpression of OsiSAP8, a member of stress associated protein (SAP) gene family of rice confers tolerance to salt, drought and cold stress in transgenic tobacco and rice. Plant Molecular Biology 66:445−62

doi: 10.1007/s11103-007-9284-2
[41]

Zhu F, Wang K, Li D, Liu Z, Li M, et al. 2022. OsSAP6 positively regulates soda saline–alkaline stress tolerance in rice. Rice 15:69

doi: 10.1186/s12284-022-00616-x
[42]

Shukla V, Choudhary P, Rana S, Muthamilarasan M. 2021. Structural evolution and function of stress associated proteins in regulating biotic and abiotic stress responses in plants. Journal of Plant Biochemistry and Biotechnology 30:779−92

doi: 10.1007/s13562-021-00704-x
[43]

Chen MX, Lu CC, Sun PC, Nie YX, Tian Y, et al. 2021. Comprehensive transcriptome and proteome analyses reveal a novel sodium chloride responsive gene network in maize seed tissues during germination. Plant, Cell & Environment 44:88−101

doi: 10.1111/pce.13849
[44]

Naeem M, Iqbal M, Shakeel A, Ul-Allah S, Hussain M, et al. 2020. Genetic basis of ion exclusion in salinity stressed wheat: implications in improving crop yield. Plant Growth Regulation 92:479−96

doi: 10.1007/s10725-020-00659-4
[45]

Shi H, Ishitani M, Kim C, Zhu JK. 2000. The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proceedings of the National Academy of Sciences of the United States of America 97:6896−901

doi: 10.1073/pnas.120170197
[46]

Shi H, Quintero FJ, Pardo JM, Zhu JK. 2002. The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants. The Plant Cell 14:465−77

doi: 10.1105/tpc.010371
[47]

Quintero FJ, Martinez-Atienza J, Villalta I, Jiang X, Kim WY, et al. 2011. Activation of the plasma membrane Na/H antiporter Salt-Overly-Sensitive 1 (SOS1) by phosphorylation of an auto-inhibitory C-terminal domain. Proceedings of the National Academy of Sciences of the United States of America 108:2611−16

doi: 10.1073/pnas.1018921108
[48]

Apse MP, Aharon GS, Snedden WA, Blumwald E. 1999. Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285:1256−58

doi: 10.1126/science.285.5431.1256
[49]

Barragán V, Leidi EO, Andrés Z, Rubio L, De Luca A, et al. 2012. Ion exchangers NHX1 and NHX2 mediate active potassium uptake into vacuoles to regulate cell turgor and stomatal function in Arabidopsis. The Plant Cell 24:1127−42

doi: 10.1105/tpc.111.095273
[50]

Pabuayon ICM, Jiang J, Qian H, Chung JS, Shi H. 2021. Gain-of-function mutations of AtNHX1 suppress sos1 salt sensitivity and improve salt tolerance in Arabidopsis. Stress Biology 1:14

doi: 10.1007/s44154-021-00014-1
[51]

Xu J, Li HD, Chen LQ, Wang Y, Liu LL, et al. 2006. A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis. Cell 125:1347−60

doi: 10.1016/j.cell.2006.06.011
[52]

Li J, Shen L, Han X, He G, Fan W, et al. 2023. Phosphatidic acid-regulated SOS2 controls sodium and potassium homeostasis in Arabidopsis under salt stress. The EMBO Journal 42:EMBJ2022112401

doi: 10.15252/embj.2022112401
[53]

Møller IM, Jensen PE, Hansson A. 2007. Oxidative modifications to cellular components in plants. Annual Review of Plant Biology 58:459−81

doi: 10.1146/annurev.arplant.58.032806.103946
[54]

Foyer CH, Noctor G. 2005. Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. The Plant Cell 17:1866−75

doi: 10.1105/tpc.105.033589
[55]

Li Q, Bian Y, Li R, Yang Z, Liu N, et al. 2023. Chitosan-enhanced heat tolerance associated with alterations in antioxidant defense system and gene expression in creeping bentgrass. Grass Research 3:7

doi: 10.48130/gr-2023-0007
[56]

Huang S, Jiang S, Liang J, Chen M, Shi Y. 2019. Current knowledge of bermudagrass responses to abiotic stresses. Breeding Science 69:215−26

doi: 10.1270/jsbbs.18164
[57]

Mittler R, Zandalinas SI, Fichman Y, Van Breusegem F. 2022. Reactive oxygen species signalling in plant stress responses. Nature Reviews Molecular Cell Biology 23:663−79

doi: 10.1038/s41580-022-00499-2
[58]

Wang Y, Zhang L, Zhang L, Xing T, Peng J, et al. 2013. A novel stress-associated protein SbSAP14 from Sorghum bicolor confers tolerance to salt stress in transgenic rice. Molecular Breeding 32:437−49

doi: 10.1007/s11032-013-9882-4
[59]

Mehta, D, Vyas S. 2023. Comparative bio-accumulation of osmoprotectants in saline stress tolerating plants: a review. Plant Stress 9:100177

doi: 10.1016/j.stress.2023.100177
[60]

Alagoz SM, Lajayer BA, Ghorbanpour M. 2023. Proline and soluble carbohydrates biosynthesis and their roles in plants under abiotic stresses. In Plant Stress Mitigators: Types, Techniques and Functions, eds. Ghorbanpour M, Shahid MA. London, United Kingdom: Academic Press. pp. 169−85 doi: 10.1016/B978-0-323-89871-3.00027-6

[61]

Jiang J, Guo Z, Sun X, Jiang Y, Xie F, et al. 2023. Role of proline in regulating turfgrass tolerance to abiotic stress. Grass Research 3:2

doi: 10.48130/GR-2023-0002
[62]

Singh P, Choudhary KK, Chaudhary N, Gupta S, Sahu M, et al. 2022. Salt stress resilience in plants mediated through osmolyte accumulation and its crosstalk mechanism with phytohormones. Frontiers in Plant Science 13:1006617

doi: 10.3389/fpls.2022.1006617