[1]

Yang N, Han MH, Teng RM, Yang YZ, Wang YH, et al. 2022. Exogenous melatonin enhances photosynthetic capacity and related gene expression in a dose-dependent manner in the tea plant (Camellia sinensis (L.) Kuntze). International Journal of Molecular Sciences 23(12):6694

doi: 10.3390/ijms23126694
[2]

Zhang W, Zhang Y, Qiu H, Guo Y, Wan H, et al. 2020. Genome assembly of wild tea tree DASZ reveals pedigree and selection history of tea varieties. Nature Communications 11:3719

doi: 10.1038/s41467-020-17498-6
[3]

Das SC, Das S, Hazarika M. 2012. Breeding of the tea plant (Camellia sinensis) in India. In Global tea breeding: achievements, challenges and perspectives, eds. Chen L, Apostolides Z, Chen ZM. Berlin, Heidelberg: Springer. pp. 69−124 doi: 10.1007/978-3-642-31878-8_3

[4]

Zhao K, Xiao ZD, She CQ, Ji LL, Fu SL. 2012. Effects of plantation patterns on photosynthetic characteristics and quality of tea. Journal of Anhui Agricultural University 39(6):934−939 (in Chinese)

doi: 10.13610/j.cnki.1672-352x.2012.06.023
[5]

Zeng L, Zhou X, Liao Y, Yang Z. 2021. Roles of specialized metabolites in biological function and environmental adaptability of tea plant (Camellia sinensis) as a metabolite studying model. Journal of Advanced Research 34:159−171

doi: 10.1016/j.jare.2020.11.004
[6]

Zhou L, Zhang H, Bian L, Tian Y, Zhou H. 2024. Phenotyping of drought-stressed poplar saplings using exemplar-based data generation and leaf-level structural analysis. Plant Phenomics 6:0205

[7]

Yu Z, Chen J, Chen J, Zhan W, Wang C, et al. 2024. Enhanced observations from an optimized soil-canopy-photosynthesis and energy flux model revealed evapotranspiration-shading cooling dynamics of urban vegetation during extreme heat. Remote Sensing of Environment 305:114098

doi: 10.1016/j.rse.2024.114098
[8]

Gu S, Wen W, Xu T, Lu X, Yu Z, et al. 2022. Use of 3D modeling to refine predictions of canopy light utilization: A comparative study on canopy photosynthesis models with different dimensions. Frontiers in Plant Science 13:735981

doi: 10.3389/fpls.2022.735981
[9]

Liu F, Song Q, Zhao J, Mao L, Bu H, et al. 2021. Canopy occupation volume as an indicator of canopy photosynthetic capacity. New Phytologist 232(2):941−956

doi: 10.1111/nph.17611
[10]

Wang Y, Song Q, Jaiswal D, de Souza AP, Long SP, et al. 2017. Development of a three-dimensional ray-tracing model of sugarcane canopy photosynthesis and its application in assessing impacts of varied row spacing. BioEnergy Research 10:626−634

doi: 10.1007/s12155-017-9823-x
[11]

Song Q, Wang Y, Qu M, Ort DR, Zhu XG. 2017. The impact of modifying photosystem antenna size on canopy photosynthetic efficiency—Development of a new canopy photosynthesis model scaling from metabolism to canopy level processes. Plant, Cell & Environment 40(12):2946−2957

doi: 10.1111/pce.13041
[12]

Song Q, Srinivasan V, Long SP, Zhu XG. 2020. Decomposition analysis on soybean productivity increase under elevated CO2 using 3-D canopy model reveals synergestic effects of CO2 and light in photosynthesis. Annals of Botany 126(4):601−614

doi: 10.1093/aob/mcz163
[13]

Chang TG, Zhao H, Wang N, Song QF, Xiao Y, et al. 2019. A three-dimensional canopy photosynthesis model in rice with a complete description of the canopy architecture, leaf physiology, and mechanical properties. Journal of Experimental Botany 70(9):2479−2490

doi: 10.1093/jxb/ery430
[14]

Song Q, Liu F, Bu H, Zhu XG. 2023. Quantifying contributions of different factors to canopy photosynthesis in 2 maize varieties: development of a novel 3D canopy modeling pipeline. Plant Phenomics 5:0075

[15]

Young TJ, Jubery TZ, Carley CN, Carroll M, Sarkar S, et al. 2023. "Canopy fingerprints" for characterizing three-dimensional point cloud data of soybean canopies. Frontiers in Plant Science 14:1141153

doi: 10.3389/fpls.2023.1141153
[16]

Li Y, Wen W, Miao T, Wu S, Yu Z, et al. 2022. Automatic organ-level point cloud segmentation of maize shoots by integrating high-throughput data acquisition and deep learning. Computers and Electronics in Agriculture 193:106702

doi: 10.1016/j.compag.2022.106702
[17]

Abinaya A, Roomi SMM. 2016. Jasmine flower segmentation: a superpixel based approach. 2016 International Conference on Communication and Electronics Systems (ICCES), Coimbatore, India, 21−22 October, 2016. USA: IEEE. pp. 1−4 doi: 10.1109/CESYS.2016.7889922

[18]

Niu X, Wang M, Chen X, Guo S, Zhang H, et al. 2014. Image segmentation algorithm for disease detection of wheat leaves. Proceedings of the 2014 International Conference on Advanced Mechatronic Systems, Kumamoto, Japan, 10−12 August, 2014. USA: IEEE. pp. 270−273 doi: 10.1109/ICAMechS.2014.6911663

[19]

Dubey SR, Dixit P, Singh N, Gupta JP. 2013. Infected fruit part detection using K-means clustering segmentation technique. International Journal of Interactive Multimedia and Artificial Intelligence 2(2):65−72

doi: 10.9781/ijimai.2013.229
[20]

Wang J, He J, Han Y, Ouyang C, Li D. 2013. An Adaptive Thresholding algorithm of field leaf image. Computers and Electronics in Agriculture 96:23−39

doi: 10.1016/j.compag.2013.04.014
[21]

Patil AB, Shaikh J. 2016. OTSU thresholding method for flower image segmentation. International Journal of Computational Engineering Research (IJCER) 6:1−6

[22]

Najjar A, Zagrouba E. 2012. Flower image segmentation based on color analysis and a supervised evaluation. Proc. 2012 International Conference on Communications and Information Technology (ICCIT), Hammamet, Tunisia, June 26-28, 2012. USA: IEEE. pp. 397−401 doi: 10.1109/ICCITechnol.2012.6285834

[23]

Patel HN, Jain RK, Joshi MV. 2012. Automatic segmentation and yield measurement of fruit using shape analysis. International Journal of Computer Applications 45(7):19−24

doi: 10.5120/6792-9119
[24]

Nilsback ME. 2009. An automatic visual flora-segmentation and classification of flower images. University of Oxford, UK https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.504504

[25]

Pan S, Kudo M, Toyama J. 2009. Edge detection of tobacco leaf images based on fuzzy mathematical morphology. 2009 First International Conference on Information Science and Engineering, Nanjing, China, 26-28 December, 2009. USA: IEEE. pp. 1219−1222 doi: 10.1109/ICISE.2009.529

[26]

Charles RQ, Hao S, Mo K, Guibas LJ. 2017. PointNet: deep learning on point sets for 3D classification and segmentation. Proc. Proceedings of the IEEE conference on computer vision and pattern recognition, Honolulu, HI, USA, 21−26 July 2017. USA: IEEE. pp. 652−660 doi: 10.1109/CVPR.2017.16

[27]

Charles RQ, Li Y, Hao S, Guibas LJ. 2017. Pointnet++: deep hierarchical feature learning on point sets in a metric space. Advances in neural information processing systems 30: 5105−5114

doi: 10.48550/arXiv.1706.02413
[28]

Patel AK, Park ES, Lee H, Lakshmi Priya GG, Kim H, et al. 2023. Deep learning-based plant organ segmentation and phenotyping of sorghum plants using LiDAR point cloud. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 16:8492−8507

doi: 10.1109/JSTARS.2023.3312815
[29]

Guo R, Xie J, Zhu J, Cheng R, Zhang Y, et al. 2023. Improved 3D point cloud segmentation for accurate phenotypic analysis of cabbage plants using deep learning and clustering algorithms. Computers and Electronics in Agriculture 211:108014

doi: 10.1016/j.compag.2023.108014
[30]

Wang L, Zheng L, Wang M. 2022. 3D point cloud instance segmentation of lettuce based on PartNet. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), New Orleans, LA, USA, 19−20 June, 2022. USA: IEEE. pp. 1647−1655 doi: 10.1109/CVPRW56347.2022.00171

[31]

Yang X, Miao T, Tian X, Wang D, Zhao J, et al. 2024. Maize stem–leaf segmentation framework based on deformable point clouds. ISPRS Journal of Photogrammetry and Remote Sensing 211:49−66

doi: 10.1016/j.isprsjprs.2024.03.025
[32]

Ngo TD, Hua BS, Nguyen K. 2023. ISBNet: a 3D point cloud instance segmentation network with instance-aware sampling and box-aware dynamic convolution. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 17−24 June 2023. USA: IEEE. pp. 13550−13559 doi: 10.1109/CVPR52729.2023.01302

[33]

Lee DT, Schachter BJ. 1980. Two algorithms for constructing a Delaunay triangulation. International Journal of Computer & Information Sciences 9:219−242

doi: 10.1007/BF00977785
[34]

Edelsbrunner H, Mücke EP. 1994. Three-dimensional alpha shapes. ACM Transactions on Graphics 13:43−72

doi: 10.1145/174462.156635
[35]

Bernardini F, Mittleman J, Rushmeier H, Silva C, Taubin G. 1999. The ball-pivoting algorithm for surface reconstruction. IEEE Transactions on Visualization and Computer Graphics 5:349−359

doi: 10.1109/2945.817351
[36]

Song Q, Zhang G, Zhu XG. 2013. Optimal crop canopy architecture to maximise canopy photosynthetic CO2 uptake under elevated CO2 – a theoretical study using a mechanistic model of canopy photosynthesis. Functional Plant Biology 40(2):108−124

doi: 10.1071/FP12056
[37]

Thornley JHM. 2002. Instantaneous canopy photosynthesis: analytical expressions for Sun and shade leaves based on exponential light decay down the canopy and an acclimated non-rectangular Hyperbola for leaf photosynthesis. Annals of Botany 89(4):451−458

doi: 10.1093/aob/mcf071
[38]

Chang TG, Shi Z, Zhao H, Song Q, He Z, et al. 2022. 3dCAP-wheat: an open-source comprehensive computational framework precisely quantifies wheat foliar, nonfoliar, and canopy photosynthesis. Plant Phenomics 2022:9758148

[39]

Song Q, Xiao H, Xiao X, Zhu XG. 2016. A new canopy photosynthesis and transpiration measurement system (CAPTS) for canopy gas exchange research. Agricultural and Forest Meteorology 217:101−107

doi: 10.1016/j.agrformet.2015.11.020
[40]

Song Q, Zhu XG. 2018. Measuring canopy gas exchange using CAnopy photosynthesis and transpiration systems (CAPTS). In Photosynthesis, ed. Sarah C. New York, NY: Humana Press, New York, NY. pp. 69−81 doi: 10.1007/978-1-4939-7786-4_4

[41]

Lang N, Jetz W, Schindler K, Wegner JD. 2023. A high-resolution canopy height model of the Earth. Nature Ecology & Evolution 7:1778−1789

doi: 10.1038/s41559-023-02206-6
[42]

Gong L, Du X, Zhu K, Lin K, Lou Q, et al. 2021. Panicle-3D: efficient phenotyping tool for precise semantic segmentation of rice panicle point cloud. Plant Phenomics 2021:9838929

[43]

Li D, Li J, Xiang S, Pan A. 2022. PSegNet: simultaneous semantic and instance segmentation for point clouds of plants. Plant Phenomics 2022:9787643

[44]

Luo L, Jiang X, Yang Y, Samy ERA, Lefsrud M, et al. 2022. Eff-3DPSeg: 3D organ-level plant shoot segmentation using annotation-efficient point clouds. arXiv 2212.10263

doi: 10.48550/arXiv.2212.10263
[45]

Masuda T. 2021. Leaf area estimation by semantic segmentation of point cloud of tomato plants. 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW). Montreal, BC, Canada, 11−17 October, 2021. USA: IEEE. pp. 1381−1389 doi: 10.1109/iccvw54120.2021.00159

[46]

Li D, Shi G, Li J, Chen Y, Zhang S, et al. 2022. PlantNet: a dual-function point cloud segmentation network for multiple plant species. ISPRS Journal of Photogrammetry and Remote Sensing 184:243−263

doi: 10.1016/j.isprsjprs.2022.01.007
[47]

Zarei A, Li B, Schnable JC, Lyons E, Pauli D, et al. 2024. PlantSegNet: 3D point cloud instance segmentation of nearby plant organs with identical semantics. Computers and Electronics in Agriculture 221:108922

doi: 10.1016/j.compag.2024.108922
[48]

Vishwakarma C, Krishna GK, Kapoor RT, Mathur K, Lal SK, et al. 2023. Bioengineering of canopy photosynthesis in rice for securing global food security: a critical review. Agronomy 13:489

doi: 10.3390/agronomy13020489
[49]

Gu W, Wen W, Wu S, Zheng C, Lu X, et al. 2024. 3D reconstruction of wheat plants by integrating point cloud data and virtual design optimization. Agriculture 14:391

doi: 10.3390/agriculture14030391
[50]

Lin S, Chen Z, Chen T, Deng W, Wan X, et al. 2023. Theanine metabolism and transport in tea plants (Camellia sinensis L.):advances and perspectives. Critical Reviews in Biotechnology 43:327−341

doi: 10.1080/07388551.2022.2036692