[1]

Lu J, He R, Sun P, Zhang F, Linhardt RJ, et al. 2020. Molecular mechanisms of bioactive polysaccharides from Ganoderma lucidum (Lingzhi), a review. International Journal of Biological Macromolecules 150:765−774

doi: 10.1016/j.ijbiomac.2020.02.035
[2]

Ren A, Li XB, Miao ZG, Shi L, Jaing AL, et al. 2014. Transcript and metabolite alterations increase ganoderic acid content in Ganoderma lucidum using acetic acid as an inducer. Biotechnology Letters 36:2529−2536

doi: 10.1007/s10529-014-1636-9
[3]

Batra P, Sharma AK, Khajuria R. 2013. Probing Lingzhi or Reishi medicinal mushroom Ganoderma lucidum (higher Basidiomycetes): a bitter mushroom with amazing health benefits. International Journal of Medicinal Mushrooms 15:127−143

doi: 10.1615/IntJMedMushr.v15.i2.20
[4]

Hajjaj H, Macé C, Roberts M, Niederberger P, Fay LB. 2005. Effect of 26-oxygenosterols from Ganoderma lucidum and their activity as cholesterol synthesis inhibitors. Applied and Environmental Microbiology 71:3653−3658

doi: 10.1128/AEM.71.7.3653-3658.2005
[5]

Zhu Z, Wang Y, Lin D, Liu G, Cao C, et al. 2023. Changes in polyphenols composition and antioxidative properties of hemp (Cannabis sativa L.) inflorescences pretreated by Ganoderma lucidum. Industrial Crops and Products 195:116422

doi: 10.1016/j.indcrop.2023.116422
[6]

Jedinak A, Thyagarajan-Sahu A, Jiang J, Sliva D. 2011. Ganodermanontriol, a lanostanoid triterpene from Ganoderma lucidum, suppresses growth of colon cancer cells through β-catenin signaling. International Journal of Oncology 38:761−767

doi: 10.3892/ijo.2011.898
[7]

Li N, Liu XH, Zhou J, Li YX, Zhao MW. 2006. Analysis of influence of environmental conditions on ganoderic acid content in Ganoderma lucidum using orthogonal design. Journal of Microbiology and Biotechnology 16:1940−1946

[8]

Joseph S, Sabulal B, George V, Smina TP, Janardhanan KK. 2009. Antioxidative and antiinflammatory activities of the chloroform extract of Ganoderma lucidum found in South India. Scientia Pharmaceutica 77:111−122

doi: 10.3797/scipharm.0808-17
[9]

Kao CHJ, Jesuthasan AC, Bishop KS, Glucina MP, Ferguson LR. 2013. Anti-cancer activities of Ganoderma lucidum: active ingredients and pathways. Functional Foods in Health and Disease 3:48−65

doi: 10.31989/ffhd.v3i2.65
[10]

Zhu M, Chang Q, Wong LK, Chong FS, Li RC. 1999. Triterpene antioxidants from Ganoderma lucidum. Phytotherapy Research 13:529−531

doi: 10.1002/(SICI)1099-1573(199909)13:6<529::AID-PTR481>3.0.CO;2-X
[11]

Wang G, Zhao J, Liu J, Huang Y, Zhong JJ, et al. 2007. Enhancement of IL-2 and IFN-γ expression and NK cells activity involved in the anti-tumor effect of ganoderic acid Me in vivo. International Immunopharmacology 7:864−870

doi: 10.1016/j.intimp.2007.02.006
[12]

Tang W, Liu JW, Zhao WM, Wei DZ, Zhong JJ. 2006. Ganoderic acid T from Ganoderma lucidum mycelia induces mitochondria mediated apoptosis in lung cancer cells. Life Sciences 80:205−211

doi: 10.1016/j.lfs.2006.09.001
[13]

Min BS, Nakamura N, Miyashiro H, Bae KW, Hattori M. 1998. Triterpenes from the spores of Ganoderma lucidum and their inhibitory activity against HIV-1 protease. Chemical and Pharmaceutical Bulletin 46:1607−1612

doi: 10.1248/cpb.46.1607
[14]

Kohda H, Tokumoto W, Sakamoto K, Fujii M, Hirai Y, etal. 1985. The biologically active constituents of Ganoderma lucidum (Fr.) Karst. Histamine release-inhibitory triterpenes. Chemical and Pharmaceutical Bulletin 33:1367−1374

doi: 10.1248/cpb.33.1367
[15]

Liu J, Shiono J, Shimizu K, Kukita A, Kukita T, et al. 2009. Ganoderic acid DM: anti-androgenic osteoclastogenesis inhibitor. Bioorganic & Medicinal Chemistry Letters 19:2154−2157

[16]

Xu YN, Zhong JJ. 2012. Impacts of calcium signal transduction on the fermentation production of antitumor ganoderic acids by medicinal mushroom Ganoderma lucidum. Biotechnology Advances 30:1301−1308

doi: 10.1016/j.biotechadv.2011.10.001
[17]

Liang CX, Li YB, Xu JW, Wang JL, Miao XL, et al. 2010. Enhanced biosynthetic gene expressions and production of ganoderic acids in static liquid culture of Ganoderma lucidum under phenobarbital induction. Applied Microbiology and Biotechnology 86:1367−1374

doi: 10.1007/s00253-009-2415-8
[18]

Contin A, Collu G, Heijden RVD, Verpoorte R. 1999. The effects of phenobarbital and ketoconazole on the alkaloid biosynthesis in Catharanthus roseus cell suspension cultures. Plant Physiology and Biochemistry 37:139−144

doi: 10.1016/S0981-9428(99)80075-8
[19]

Ren A, Qin L, Shi L, Dong X, Mu DS, et al. 2010. Methyl jasmonate induces ganoderic acid biosynthesis in the basidiomycetous fungus Ganoderma lucidum. Bioresource Technology 101:6785−6790

doi: 10.1016/j.biortech.2010.03.118
[20]

Shi L, Gong L, Zhang X, Ren A, Gao T, et al. 2015. The regulation of methyl jasmonate on hyphal branching and GA biosynthesis in Ganoderma lucidum partly via ROS generated by NADPH oxidase. Fungal Genetics and Biology 81:201−211

doi: 10.1016/j.fgb.2014.12.002
[21]

Lan LW. 2016. Study on the regulation of DNA methylation on ganoderic acids biosynthesis in Ganoderma lucidum. Master's Thesis. Fujian Normal University, China. 86 pp.

[22]

Li YQ, Wang SF. 2006. Anti-hepatitis B activities of ganoderic acid from Ganoderma lucidum. Biotechnology Letters 28:837−841

doi: 10.1007/s10529-006-9007-9
[23]

Tang YJ, Zhong JJ. 2002. Fed-batch fermentation of Ganoderma lucidum for hyperproduction of polysaccharide and ganoderic acid. Enzyme and Microbial Technology 31:20−28

doi: 10.1016/S0141-0229(02)00066-2
[24]

Tang YJ, Zhang W, Zhong JJ. 2009. Performance analyses of a pH-shift and DOT-shift integrated fed-batch fermentation process for the production of ganoderic acid and Ganoderma polysaccharides by medicinal mushroom Ganoderma lucidum. Bioresource Technology 100:1852−1859

doi: 10.1016/j.biortech.2008.10.005
[25]

Box GEP, Behnken DW. 1960. Some new three level designs for the study of quantitative variables. Technometrics 2:455−475

doi: 10.1080/00401706.1960.10489912
[26]

Calam TT, Çakıcı GT. 2023. Optimization of square wave voltammetry parameters by response surface methodology for the determination of Sunset yellow using an electrochemical sensor based on Purpald®. Food Chemistry 404:134412

doi: 10.1016/j.foodchem.2022.134412
[27]

Shi L, Ren A, Mu D, Zhao M. 2010. Current progress in the study on biosynthesis and regulation of ganoderic acids. Applied Microbiology and Biotechnology 88:1243−1251

doi: 10.1007/s00253-010-2871-1
[28]

Clinkenbeard KD, Sugiyama T, Moss J, Reed WD, Lane MD. 1973. Molecular and catalytic properties of cytosolic acetoacetyl coenzyme A thiolase from avian live. The Journal of Biological Chemistry 248:2275−2284

doi: 10.1016/S0021-9258(19)44106-9
[29]

Chun KY, Vinarov DA, Zajicek J, Miziorko HM. 2000. 3-Hydroxy-3-methylglutaryl-CoA synthase. A role for glutamate 95 in general acid/base catalysis of C−C bond formation. Journal of Biological Chemistry 275:17946−17953

doi: 10.1074/jbc.M909725199
[30]

Xu JW, Xu YN, Zhong JJ. 2012. Enhancement of ganoderic acid accumulation by overexpression of an N-terminally truncated 3-hydroxy-3-methylglutaryl coenzyme A reductase gene in the basidiomycete Ganoderma lucidum. Applied and Environmental Microbiology 78:7968−7976

doi: 10.1128/AEM.01263-12
[31]

Shiao MS. 2003. Natural products of the medicinal fungus Ganoderma lucidum: occurrence, biological activities, and pharmacological functions. The Chemical Record 3:172−180

doi: 10.1002/tcr.10058
[32]

Bergès T, Guyonnet D, Karst F. 1997. The Saccharomyces cerevisiae mevalonate diphosphate decarboxylase is essential for viability, and a single Leu-to-Pro mutation in a conserved sequence leads to thermosensitivity. Journal of Bacteriology 179:4664−4670

doi: 10.1128/jb.179.15.4664-4670.1997
[33]

Ding YX, Ou-Yang X, Shang CH, Ren A, Shi L, et al. 2008. Molecular cloning, characterization, and differential expression of a farnesyl-diphosphate synthase gene from the basidiomycetous fungus Ganoderma lucidum. Bioscience Biotechnology and Biochemistry 72:1571−1579

doi: 10.1271/bbb.80067
[34]

Zhou JS, Ji SL, Ren MF, He YL, Jing XR, et al. 2014. Enhanced accumulation of individual ganoderic acids in a submerged culture of Ganoderma lucidum by the overexpression of squalene synthase gene. Biochemical Engineering Journal 90:178−183

doi: 10.1016/j.bej.2014.06.008
[35]

Zhang DH, Li N, Yu X, Zhao P, Li T, et al. 2017. Overexpression of the homologous lanosterol synthase gene in ganoderic acid biosynthesis in Ganoderma lingzhi. Phytochemistry 134:46−53

doi: 10.1016/j.phytochem.2016.11.006
[36]

Wang WF, Xiao H, Zhong JJ. 2018. Biosynthesis of a ganoderic acid in Saccharomyces cerevisiae by expressing a cytochrome CYP450 gene from Ganoderma lucidum. Biotechnology and Bioengineering 115:1842−1854

doi: 10.1002/bit.26583
[37]

Lan X, Yuan W, Wang M, Xiao H. 2019. Efficient biosynthesis of antitumor ganoderic acid HLDOA using a dual tunable system for optimizing the expression of CYP5150L8 and a Ganoderma P450 reductase. Biotechnology and Bioengineering 116:3301−3311

doi: 10.1002/bit.27154
[38]

Jiang X, Han W, Liu Y, Tang C, Feng J, et al. 2023. Identification of key factors affecting liquid fermentation of Ganoderma lucidum for triterpenes: a review. Microbiology China 50:2155−2172 (in Chinese)

doi: 10.13344/j.microbiol.china.221074
[39]

Wang WF, Xiao H, Zhong JJ. 2022. Biosynthesis of a novel ganoderic acid by expressing CYP genes from Ganoderma lucidum in Saccharomyces cerevisiae. Applied Microbiology and Biotechnology 106:523−534

doi: 10.1007/s00253-021-11717-w
[40]

Yang C, Li W, Li C, Zhou Z, Xiao Y, et al. 2018. Metabolism of ganoderic acids by a Ganoderma lucidum cytochrome P450 and the 3-keto sterol reductase ERG27 from yeast. Phytochemistry 155:83−92

doi: 10.1016/j.phytochem.2018.07.009
[41]

Wang Q, Du Z, Li Z, Yuan W, Zhong JJ, et al. 2025. A branchpoint cytochrome P450 CYP512A13 interconverts different types of Ganoderma triterpenoids. ACS Catalysis 15:13428−13443

doi: 10.1021/acscatal.5c04095
[42]

Bi Z, Li H, Liang Y, Sun D, Liu S, et al. 2025. Emerging paradigms for target discovery of traditional medicines: a genome-wide pan-GPCR perspective. The Innovation 6:100774

doi: 10.1016/j.xinn.2024.100774
[43]

Chen S, Xu J, Liu C, Zhu Y, Nelson DR, et al. 2012. Genome sequence of the model medicinal mushroom Ganoderma lucidum. Nature Communication 3:913

doi: 10.1038/ncomms1923
[44]

Du Y, Peng S, Chen H, Li J, Huang F, et al. 2025. Unveiling the spatiotemporal landscape of Ganoderma lingzhi: insights into ganoderic acid distribution and biosynthesis. Engineering 1−13

doi: 10.1016/j.eng.2025.03.030
[45]

Xu X, Li C, Wu F, Zhao S, Chen T, et al. 2025. Integrated Transcriptomic and Targeted Metabolomic Analysis Reveals the Key Genes Involved in Triterpenoid Biosynthesis of Ganoderma lucidum. Journal of Fungi 11:57

doi: 10.3390/jof11010057