[1]

Babos K, Sass P, Mohácsy P. 1984. Relationship between the peel structure and storability of apples. Acta Agronomica Hungarica 33:41−50

[2]

Homutová I, Blažek J. 2006. Differences in fruit skin thickness between selected apple (Malus domestica Borkh.) cultivars assessed by histological and sensory methods. Horticultural Science 33:108−113

doi: 10.17221/3747-hortsci
[3]

Zamorskyi V. 2007. The role of the anatomical structure of apple fruits as fresh cut produce. Acta Horticulturae 746:509−512

doi: 10.17660/ActaHortic.2007.746.64
[4]

Lara I, Belge B, Goulao LF. 2014. The fruit cuticle as a modulator of postharvest quality. Postharvest Biology and Technology 87:103−112

doi: 10.1016/j.postharvbio.2013.08.012
[5]

Lara I, Heredia A, Domínguez E. 2019. Shelf life potential and the fruit cuticle: the unexpected player. Frontiers in Plant Science 10:770

doi: 10.3389/fpls.2019.00770
[6]

Wang J, Cui Q, Li H, Liu Y. 2017. Mechanical properties and microstructure of apple peels during storage. International Journal of Food Properties 20:1159−1173

doi: 10.1080/10942912.2016.1203934
[7]

Harker FR, Kupferman EM, Marin AB, Gunson FA, Triggs CM. 2008. Eating quality standards for apples based on consumer preferences. Postharvest Biology and Technology 50:70−78

doi: 10.1016/j.postharvbio.2008.03.020
[8]

Konarska A. 2012. Differences in the fruit peel structures between two apple cultivars during storage. Acta Scientiarum Polonorum Hortorum Cultus 11:105−116

[9]

Maguire KM, Lang A, Banks NH, Hall A, Hopcroft D, et al. 1999. Relationship between water vapour permeance of apples and micro-cracking of the cuticle. Postharvest Biology and Technology 17:89−96

doi: 10.1016/S0925-5214(99)00046-0
[10]

Veraverbeke EA, Van Bruaene N, Van Oostveldt P, Nicolaï BM. 2001. Non destructive analysis of the wax layer of apple (Malus domestica Borkh.) by means of confocal laser scanning microscopy. Planta 213:525−533

doi: 10.1007/s004250100528
[11]

Yang Y, Zhou B, Zhang J, Wang C, Liu C, et al. 2017. Relationships between cuticular waxes and skin greasiness of apples during storage. Postharvest Biology and Technology 131:55−67

doi: 10.1016/j.postharvbio.2017.05.006
[12]

Konarska A. 2015. Characteristics of fruit (Prunus domestica L.) skin: structure and antioxidant content. International Journal of Food Properties 18:2487−2499

doi: 10.1080/10942912.2014.984041
[13]

Kritzinger I, Lötze E. 2019. Quantification of lenticels in Japanese plum cultivars and their effect on total fruit peel permeance. Scientia Horticulturae 254:35−39

doi: 10.1016/j.scienta.2019.04.082
[14]

Collins PP, O’donoghue EM, Rebstock R, Tiffin HR, Sutherland PW, et al. 2019. Cell type-specific gene expression underpins remodelling of cell wall pectin in exocarp and cortex during apple fruit development. Journal of Experimental Botany 70:6085−6099

doi: 10.1093/jxb/erz370
[15]

Lashbrooke JG, Adato A, Lotan O, Alkan N, Tsimbalist T, et al. 2015. The tomato MIXTA-like transcription factor coordinates fruit epidermis conical cell development and cuticular lipid biosynthesis and assembly. Plant Physiology 169:2553−2571

doi: 10.1104/pp.15.01145
[16]

Ginzberg I, Stern RA. 2019. Control of fruit cracking by shaping skin traits–apple as a model. Critical Reviews in Plant Sciences 38:401−410

doi: 10.1080/07352689.2019.1698129
[17]

Lemaire-Chamley M, Petit J, Garcia V, Just D, Baldet P, et al. 2005. Changes in transcriptional profiles are associated with early fruit tissue specialization in tomato. Plant Physiology 139:750−769

doi: 10.1104/pp.105.063719
[18]

McAtee P, Karim S, Schaffer R, David K. 2013. A dynamic interplay between phytohormones is required for fruit development, maturation, and ripening. Frontiers in Plant Science 4:79

doi: 10.3389/fpls.2013.00079
[19]

Martin LBB, Rose JKC. 2014. There’s more than one way to skin a fruit: formation and functions of fruit cuticles. Journal of Experimental Botany 65:4639−4651

doi: 10.1093/jxb/eru301
[20]

Shi JX, Adato A, Alkan N, He Y, Lashbrooke J, et al. 2013. The tomato S l SHINE 3 transcription factor regulates fruit cuticle formation and epidermal patterning. New Phytologist 197:468−480

doi: 10.1111/nph.12032
[21]

Leide J, Hildebrandt U, Reussing K, Riederer M, Vogg G. 2007. The developmental pattern of tomato fruit wax accumulation and its impact on cuticular transpiration barrier properties: effects of a deficiency in a β-ketoacyl-coenzyme a synthase (LeCER6). Plant Physiology 144:1667−1679

doi: 10.1104/pp.107.099481
[22]

Legay S, Guerriero G, André C, Guignard C, Cocco E, et al. 2016. MdMyb93 is a regulator of suberin deposition in russeted apple fruit skins. New Phytologist 212:977−991

doi: 10.1111/nph.14170
[23]

Winkel-Shirley B. 2002. Biosynthesis of flavonoids and effects of stress. Current Opinion in Plant Biology 5:218−223

doi: 10.1016/S1369-5266(02)00256-X
[24]

Li F, Min D, Ren C, Dong L, Shu P, et al. 2019. Ethylene altered fruit cuticular wax, the expression of cuticular wax synthesis-related genes and fruit quality during cold storage of apple (Malus domestica Borkh. c.v. Starkrimson) fruit. Postharvest Biology and Technology 149:58−65

doi: 10.1016/j.postharvbio.2018.11.016
[25]

Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, et al. 2008. Determination of structural carbohydrates and lignin in biomass. Laboratory Analytical Procedure 1617:1−16

[26]

Fan S, Zhang D, Gao C, Wan S, Lei C, et al. 2018. Mediation of flower induction by gibberellin and its inhibitor paclobutrazol: mRNA and miRNA integration comprises complex regulatory cross-talk in apple. Plant and Cell Physiology 59:2288−2307

doi: 10.1093/pcp/pcy154
[27]

Young MD, Wakefield MJ, Smyth GK, Oshlack A. 2010. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biology 11:R14

doi: 10.1186/gb-2010-11-2-r14
[28]

Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, et al. 2008. KEGG for linking genomes to life and the environment. Nucleic Acids Research 36:D480−D484

doi: 10.1093/nar/gkm882
[29]

Radenkovs V, Püssa T, Juhnevica-Radenkova K, Kviesis J, Salar FJ, et al. 2020. Wild apple (Malus spp.) by-products as a source of phenolic compounds and vitamin C for food applications. Food Bioscience 38:100744

doi: 10.1016/j.fbio.2020.100744
[30]

Tsao R, Yang R, Young JC, Zhu H. 2003. Polyphenolic profiles in eight apple cultivars using high-performance liquid chromatography (HPLC). Journal of Agricultural and Food Chemistry 51:6347−6353

doi: 10.1021/jf0346298
[31]

Amarante C, Banks NH, Ganesh S. 2001. Effects of coating concentration, ripening stage, water status and fruit temperature on pear susceptibility to friction discolouration. Postharvest Biology and Technology 21:283−290

doi: 10.1016/S0925-5214(00)00155-1
[32]

Veraverbeke EA, Lammertyn J, Saevels S, Nicolaï BM. 2001. Changes in chemical wax composition of three different apple (Malus domestica Borkh.) cultivars during storage. Postharvest Biology and Technology 23:197−208

doi: 10.1016/S0925-5214(01)00128-4
[33]

Veraverbeke EA, Verboven P, Van Oostveldt P, Nicolaï BM. 2003. Prediction of moisture loss across the cuticle of apple (Malus sylvestris subsp. mitis [Wallr.]) during storage: part 1. model development and determination of diffusion coefficients. Postharvest Biology and Technology 30:75−88

doi: 10.1016/S0925-5214(03)00083-8
[34]

Crisosto CH, Johnson RS, Luza JG, Crisosto GM. 1994. Irrigation regimes affect fruit soluble solids concentration and rate of water loss of `O’Henry' peaches. HortScience 29:1169−1171

doi: 10.21273/HORTSCI.29.10.1169
[35]

Peña ME, Artés-Hernández F, Aguayo E, Martínez-Hernández GB, Galindo A, et al. 2013. Effect of sustained deficit irrigation on physicochemical properties, bioactive compounds and postharvest life of pomegranate fruit (cv. ‘Mollar de Elche’). Postharvest Biology and Technology 86:171−180

doi: 10.1016/j.postharvbio.2013.06.034
[36]

Knoche M, Beyer M, Peschel S, Oparlakov B, Bukovac MJ. 2004. Changes in strain and deposition of cuticle in developing sweet cherry fruit. Physiologia Plantarum 120:667−677

doi: 10.1111/j.0031-9317.2004.0285.x
[37]

Maguire KM, Banks NH, Lang A, Gordon IL. 2000. Harvest date, cultivar, orchard, and tree effects on water vapor permeance in apples. Journal of the American Society for Horticultural Science 125:100−104

doi: 10.21273/JASHS.125.1.100
[38]

Veraverbeke EA, Verboven P, Van Oostveldt P, Nicolaı̈ BM. 2003. Prediction of moisture loss across the cuticle of apple (Malus sylvestris subsp. mitis [Wallr. ]) during storage: part 2. model simulations and practical applications. Postharvest Biology and Technology 30:89−97

doi: 10.1016/S0925-5214(03)00082-6
[39]

Glenn GM, Poovaiah BW. 1985. Cuticular permeability to calcium compounds in ‘golden delicious’ apple fruit. Journal of the American Society for Horticultural Science 110:192−195

doi: 10.21273/JASHS.110.2.192
[40]

Glenn GM, Rom CR, Rasmussen HP, Poovaiah BW. 1990. Influence of cuticular structure on the appearance of artificially waxed ‘Delicious’ apple fruit. Scientia Horticulturae 42:289−297

doi: 10.1016/0304-4238(90)90052-G
[41]

Ariizumi T, Hauvermale AL, Nelson SK, Hanada A, Yamaguchi S, et al. 2013. Lifting DELLA repression of Arabidopsis seed germination by nonproteolytic gibberellin signaling. Plant Physiology 162:2125−2139

doi: 10.1104/pp.113.219451
[42]

Noctor G, Mhamdi A, Chaouch S, Han Y, Neukermans J, et al. 2012. Glutathione in plants: an integrated overview. Plant, Cell & Environment 35:454−484

doi: 10.1111/j.1365-3040.2011.02400.x
[43]

Reiter WD, Vanzin GF. 2001. Molecular genetics of nucleotide sugar interconversion pathways in plants. Plant Cell Walls, eds. Carpita NC, Campbell M, Tierney M. Dordrecht: Springer Netherlands. pp. 95−113 doi: 10.1007/978-94-010-0668-2_6

[44]

Dudareva N, Klempien A, Muhlemann JK, Kaplan I. 2013. Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytologist 198:16−32

doi: 10.1111/nph.12145